氣象學報

第27卷 Vol 27 English No.1, No.2, No.3, No.4

交通部中央氟象局出版 Central Weather Bureau

Meteorological Bulletin

題名	作/譯者	卷期號	頁碼	出版年
海嘯及所引起之災害	徐明同	27/01	1	1981.03
台灣地區農業氣候區域之劃分	郭文鑠 楊之遠	27/01	16	1981.03
以電子計算機研討氣象地圖之繪製	徐月娟	27/01	29	1981.03
台灣地區空梅之環流特徵	陳正改 廖志翔	27/02	1	1981.06
台灣不同地區降雨持續性與農業機械設備使用之相關研究	邱永和 曾文炳 徐君 明 李南文	27/02	15	1981.06
1980年諾瑞斯颱風之分析報告	任立渝 華文逵	27/02	27	1981.06
頻譜風浪預報模式	李汴軍	27/34	1	1981.12
氣流線自動分析之研究	胡仲英	27/34	8	1981.12
工程上應考慮的地震問題	徐明同	27/34	17	1981.12
台北盆地二氧化硫濃度之評估	張哲明	27/34	41	1981.12

家 上の 報 氯

季 刋

第二十七卷 第一期

目 次

論著

海嘯及所引起之災害	徐明同	(1)
臺灣地區農業氣候區域之劃分	郭文鑠 楊之遠	(16)
以電子計算機研討氣象地圖之繪製	徐月娟	(29)

14 99 99 99 99 99 99 N		2 2222		29999 26) and a	1282285	a A A
		氯	をよ	過よ	報		
£			季	刋			8
8		第二十.	ヒ卷	第一	期		8
8	主	編者	中央象	氣象 局氣象	电學報社		o 🖡
	地	址		う公園路ナ 三七一三-		ŀ線)	故
ž.	發	行人	吳	宗	堯		雨
R	社	長	吳 電話:	。 ミーーC	堯 〇四八(設請交換
	ED 1	刷 者	文 英	印書	公司		0
	地	址		市 三 水 三〇六四 三〇六七	七二四		
tereneranas	華 CPO C	R 國 ASASAS	2 + 898.6	年三 1993-1989	月出	版 PROPID	ର୍ଜି ଅକ୍ଟେଲ୍ଲେଲ୍ ଅକ୍ଟେଲ୍ଲେଲ୍ଲ

海嘯及所引起之災害

Tsunamis and Their Damage

徐 明 同

Ming-Tung Hsu

ABSTRACT

This report represents my attemp to synthesize current knowledge on tsunamis (seismic sea waves), and my researh on tsunamis in Taiwan for ocean engineers and oceanographers.

It introduces the definition of tsunami, historical tsunamis in various region on the globe and in Taiwan, and some problems related to the mechanism of generation and the propagation of tsunamis in the ocean. It deals with the current vlocity and the lateral force of tsunamis caused damage to castal stractures with actual photors as illustration. Some methods for tsunami warming system and disaster prevention are metnioned.

In addition, it states a large local earthquake caused a strong tsunmi and invaded the Keelung harbour, on December 18, 1867,

海嘯此詞指幾種不同現象所引起之異常高潮。 第一指潮流高潮(Tidal bore),發生在(i)河口 星漏斗狀,(ii)河口深度向上游急劇減小,且(iii) 潮差較大的地方。我國杭州錢塘江之海嘯,在海寧 附近常以 12-3 節的速度前進,其高度達數公尺。 此外在英國的 Severn 河,法國的 Seine 河,美 國的 Colorado 河,巴西的 Amazon 河亦頗開 名的。

こ前

第二指氣象暴潮(storm surge, high tide) ,在下列條件之下發生: (i) 低氣壓或颱風侵襲時 ,海面發生高漲,(ii) 此高漲之海面隨着低氣壓滲 動,當其速度與長浪 (Swell) 之速度接近時,發 生共鳴作用,會更加增高,(iii) 暴風向海岸吹, 亦能增高海面高度,(iv) 與天文潮重疊時,也很 顯著。這種海嘯叫做氣象海嘯。日本東京灣,大阪 灣,伊勢灣等,美國 Mexico 灣,Bangladesh 之 Bengal 灣地區等較為聞名。於臺灣夏季颱風 侵襲南部時,在西南沿海地區常發生氣象海嘯,造 成房屋浸水,新聞報導常以「海水倒灌」稱之。 第三指人為的核子試 爆所引起 的高潮。例如 1954 年 3 月在 Bikini 環礁核子爆炸實驗時,距 離爆炸地點約 4,000 公里的日本太平洋岸驗潮站獲 得很明顯的記錄,其最大全振幅達 40 公分左右, 週期約為 12 分。

第四指大山崩所造成之海嘯,例如1958年7月 10日阿拉斯加地震後,在 Littuya 灣 (58°37′N, 137°40′W) 發生大山崩而引起波高 30 公尺以上之 大海嘯〔1〕*。

第五指火山爆發所引起的高潮。最有名者為 1883年8月27日印尼 Krakatau 島火山爆發時所 引起者。該島位於 Sunda 海峽,兩側之蘇門答臘 島及爪哇島沿岸受高達40公尺以上的海嘯侵襲,發 生嚴重災害,而海嘯不但傳播至太平洋對岸,而並 經過印度洋,繞好窒角至大西洋。

第六指海底地震所引起的海水擾動,以長波傳 播至海岸地區所引起之高潮。這種 叫做地 震海嘯 (seismic sea wave),日人叫做津波(tsunami) 而「tsunami」已成為英文專門用語,被普遍採 用。

* []內數字指參考文獻•

據 Dorn [2] 之定義如下: 隨着任何大幅度 (large scale)海洋自由表面短時間擾動所形成之 重力波系統,日本名叫做 tsunami, 不包括氣象 海嘯及靜振 (seiches)。本文所要討論者為地震 海嘯。

- 2 -

海嘯為海岸工程災害主因之中具最代表性之一 ,而常會受到海嘯侵襲的地區(tsunami prone areas)為太平洋沿岸地區,地中海沿岸地區,中 東及印度等地區,其中較嚴重者為太平洋沿岸之日 本太平洋岸三陸沿岸,夏威夷,阿拉斯加,智利等 地區,臺灣地區雖不常受侵襲,但歷史上曾有過災 害記錄。

本文將介紹過去發生之大海嘯,海嘯成因,傳 播狀況,海嘯之破壞力及所引起之海洋工程災害以 及海嘯預報及其防災對策等問題,以供海洋工程人 員之參考。

二、世界各地之大海嘯及臺灣之海嘯

關於海嘯目錄計有Heck [3], Imamura [4], Murty [5], 理科年度表 [6] 等很多。 茲將選擇 自古以來到現在為止世界各地所發生的大海嘯介紹 於下。

歷史上最早的記錄為公元前 1000 年在地中海 Creta 島發生的海嘯,據約1,000年後之記載,當時 Helis 村整個沉沒於 Colint 灣下,而所有住民 均溺死。在這段1,000年間,大海嘯大約發生10次。 目前每年全世界發生有災害的海嘯約 2~3 次。當 然關於海底地震的活動,自古以來到現在沒有太大 的變化。然而大海嘯增加的主要理由是人口增加結 果,過去沒有人住的海岸地區也開始有人定居,且 做許多工程設施。這種趨勢今後也會繼續下去,故 大海嘯對人類的威脅今後將更加增加 [7]。

表一:海嘯規模之分級

規模	說	明
4	波高超過30公尺,被害區 里以上者。	域達到沿岸500公
8.	波高達到 10~20 公尺程度 沿岸400公里以上者。	。 被害區域達到
2	波高 4~6 公尺程度,可使 人畜溺死者。	ē部分房屋流失,
1	波高2公尺左右,損壞海濟 舶的程度。	我的房屋,带 走船
0	波高1公尺左右,可能造成	小災害者。
-1	波高50公分以下,通常無	災害者•

為了表示海嘯之大小方便起見,先介紹海嘯規 模如表一。此表係今村[8]所創造,而 Iida [9] 增設「-1」。

~~ 684年11月29日 日本海嘯:地震規模M為8.4, 震央在土佐外海,土佐發生海嘯規模 m 為 3.

869年7月13日 日本海嘯:地震規模M為8.6 發生在日本三陸外海,受海嘯災害地區為日本三陸 沿岸,多賀城溺死者約1,000人。海嘯規模 m 為4.

1509年9月14日 土耳其海嘯:地震後海嘯越 過 Constantinople 與 Garata 之障壁,海嘯 規模m篇 3。

1570年2月8日 智利海嘯: 震央在 Concepcion 附近, 發生大災害。

1575年12月16日 智利海嘯 : 大海嘯發生在 Valdivia 港,兩隻西班牙大帆船遭難。

1586 年 7 月 9 日 秘魯海嘯: 震央在 Lima 附近,海嘯波高達 25.6 公尺,m 為 4。

1611年12月2日 日本海嘯:地震規模 M 為 8.1, 震央在三陸外海,海嘯受災地區為三陸地區及 北海道東岸地區,死者約3,000人,波高可達25 公 尺,m 為 4。

1707年10月28日 日本海嘯:地震規模 M 為 84,震央在紀伊半島南方,海嘯侵襲區域自伊豆半 島至九州之太平洋沿岸,死者達 3,544人,流失房 屋 11,170 戶,波高最高達 25.7 公尺,m 為 4。

1724年 秘魯海嘯:地震發生在 Lima 附近, 在 Callao 來襲24.4 公尺海嘯造成災害,m為4。
1751年5月25日 智利海嘯:地震發生在Concepcion 村,而海嘯侵襲多次蒙受災害, Juan Fernandez 島更嚴重,m為3。

1755年11月1日 葡萄牙海嘯:震央在里斯本 附近,最大有感距離達 5,100 公里的巨大地震,死 者約 60,000人。海嘯侵襲葡萄牙及西班牙沿岸地區 ,最大波高達20公尺。此海嘯經過10小時余後橫過 大西洋到達西印度羣島。

1771年4月24日 日本海嘯:地震規模M為7.4 ,震央在石垣島南方,可能無震害,海嘯侵襲宮古 及八重山羣島,而石垣島最嚴重,波高達85公尺之 高,全島除了山區均浸水,溺死者11.741人,流失 房屋3,237戶,m為4,為歷年來日本最大的海嘯。

1792年5月21日 日本海嘯:地震規模M為6.4, 震央在溫泉岳,大山崩發生在島原海而引起約 10 公尺高之海嘯,死者15,030人,流失房屋3,284戶, m 為 3。 1820年12月29日 印尼海嘯: 5-6 公尺之海嘯 侵襲 Celebes 島的 Makassar 村,船隻漂流至 屋頂上。

1845年 阿拉斯加海啸:震央在 Yukutat 灣 ,引起海啸,死者100人。

1854年12月24日 日本海嘯:地震規模為8.4, 震央在紀伊半島南方,海嘯侵襲自房總半島至九州 的海岸,流失房屋15,000戶,死者約30,000人,波 高最高者為久禮之16.1公尺,m為4。

1868年8月13日 智利海嘯:海嘯發生在秘魯 南部(現在是智利北部) , 美國的軍艦 Water Lee 號被最大波高21公尺餘的海嘯搬到內陸 400 餘公尺。退潮時, Iquique 灣之海底露出至水深 約8公尺, 而漲潮時, 12公尺餘的波浪冲進 Iquique 市區而引起大洪水。

1883年8月26-27日 印尼海嘯:Krakatau島 位於印尼之蘇門答臘島與爪哇島之間,發生火山爆 發,該島之北部完全被吹毀,火山灰昇至27公里餘 之高。面對 Sunda 海峡的蘇門答臘島與爪哇島沿 岸受推定最大波高 41 公尺之海嘯侵襲,而兩島海 邊之諸城市遭毀滅,死者 36,000 人以上。許多船 舶冲移陸上,其中有的船舶搬到內陸約3公里,高 度10公尺處。由此海峡向西放射的海嘯進入印度洋 ,然後繞過好整 角至大西洋。南非(距浪源 7,500 公里),Horn 角(距浪源 12,500 公里)及巴拿馬 (距浪源 18,350 公里)等之檢潮儀有一連串十幾波 的記錄。

1896年6月15日 日本海嘯:地震規模M為7.6, 震央在三陸外海,無震害,海嘯發生地區自北海道 至牡鹿半島,死者27,122人,流失房屋8,891戶, 波高最高於吉波為24.4公尺,m為4。此海嘯越過 太平洋到達夏威夷及加州沿岸。

1905年7月4日 阿拉斯加海嘯 : 震央在 Yakutat 灣,在 Russelford 測得波高 4.5~6 公尺。

1922年11月11日 智利海嘯:震央在 Coquimbo 附近,地震規模M為 8.3 波高在 Chanaral 為 9.14 公尺, Caldera 6.4 公尺的 Coquimbo 5.2 公尺,死者數百人。

1926年3月16日 Cook 島海嘯:海嘯發生於 南太平洋 Cook 羣島中 Palmerstone 島,而此 島沉沒海中,原住民無法謀生。

1927年11月21日 智利海嘯:地震規模M 7.1,

震央在智利南部外海,海嘯侵襲 Aisen 河區域, 沿岸40公里大浸水。

1929年11月18日 加拿大海嘯:地震規模M為 7.2, 震央在 Grand Bank,海嘯侵襲 Newfoundland 島之海灣,高達15公尺,破壞村莊,災害 甚大,死者26人。

1930年12月 28-30 日 智利海嘯:海嘯侵襲智 利沿海達 482.8 公里之長,在 Coquimbo 波高最 大。

1933年3月3日 日本海嘯:地震規模M 為 8.4, 震央在三陸東方,無震害。海嘯侵襲日本太平洋沿 岸,而三陸沿岸災害甚大。死者 3,008 人,流失房 屋4,917戶,倒塌2,346戶,浸水 4,329戶,流失船舶 7,303 隻,波高在綾里為25.0公尺,白濱23.0公尺, m為3,在加州沿岸也有記錄。

1944年12月7日 日本海嘯:地震規模M為8.0 ,震央在熊野灘。海嘯侵襲紀伊半島熊野灘沿岸波 高 8-10公尺,m為3。

1946年4月1日 阿拉斯加海嘯:地震規模M為 7.4, 震央在阿留申列島東部, Unimak 島發生大 海嘯,在島上海拔10公尺,二樓鋼筋水泥造的燈塔 破壞,臺員5人死亡,波高達 30 公尺。在加州的 Santa Cruz 和 Half Moon 灣,波高 3.5 公 尺,死者1人,在夏威夷島測得最大波高達16公 尺,Hilo 市受嚴重災害,死者 163人。

1946年12月21日、日本海嘯:地震規模M為8.1
 ,震央在紀伊半島外海。海嘯侵襲自靜岡縣至九州
 之沿海,最高達,4-6 公尺,m 為 3。

1947年3月26日 紐西蘭海嘯:地震規模M為 7.0,震央在北部紐西蘭之東北方外海,自Whangara 至 Tatapouri 間12.9公里長發生大海嘯, 推測波高為9.1-10.7 公尺。

1957年3月9日 阿拉斯加海嘯:地震規模M為 8.25, 震央在Unimak島附近,海嘯侵襲Unimak 島的 Scotich 角,高達 15 公尺。夏威夷島也發 生災害。

1960年5月22-24日 智利海嘯:地震規模M為 8.3,震央在智利中部外海,海嘯侵襲智利沿岸,在 Chiloe 島東部最大,波高達 5.0-7.4 公尺。夏威 夷島波高10公尺,死者61人。地震後22小時海嘯越 過太平洋,侵襲日本北海道東南沿岸及三陸沿岸, 最大波高6公尺,發生大災害。計死者119人,失蹤 20人,房屋倒塌1,571棟,流失者1,259棟,船舶沉 - 4 ---

沒者 94艘,流失者 1,036艘。

1964年3月27日 阿拉斯加海嘯:地震規模8.4, 震央在 Prince William 海灣,海嘯在 Valdez 為6公尺以上,死者31人,Whittier 9.2 公尺, 死者13人,Prince William 海灣 16.6 公尺,死 者23人,Seward 7.0 公尺,死者12人。Alaska 死者20人,Kodiak 島約20公尺。

其次將述臺灣之海嘯記錄:

1867年12月18日 海嘯:

在臺灣過去發生的最大海嘯為1867年12月18日 基隆外海地震所引起的。地震規模 M 大約為 7.0, 根據 Davidson [10],此地震在臺灣全島都有感 覺而北部地區最强烈,而基隆市街及其附近發生大 災害。據在海關服務的外國人報告,在這一天基隆 發生十五次有感地震,而引起災害者為第一次地震 。第一次有感地震發生後十五秒內發生災害而基隆 市街變成廢墟。由基隆港的海水流出,而留下海底 曝露的事實,可判斷地震力。幸而當時沒有外國船 舶在港内,而只有中國帆船。這些大小帆船一瞬間 留在乾的海底,而另一瞬間被折回的巨大波浪淹沒 或者以驚人的速度猛衝街上,破壞海邊附近留下來 的少數房屋。很多魚向海岸衝上來,而人民迅速地 拾集。在許多地方,大地裂開而再封閉,有一座山 裂開而形成大山峽,而從山的側面流出熱水。這些 **熱**水來自火山坑,而富有硫磺質溫泉和噴泉。此外 還有發生許多有形的變化,包含基隆抛錨地加深數 英尺。人命的損失不知道,很可能沒有計算,預估 死者可能達數百人。海嘯規模m為2。

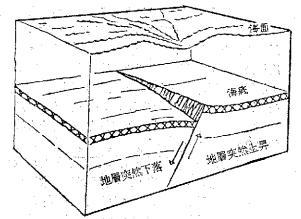
此外淡水廳誌亦有「鷄籠頭,金包里沿海山傾 地裂,海水暴漲屋宇傾壞,溺死者數百人」的記載。

1917年5月6日海嘯:據劉氏[11]引用今村 [8] 之海载年表中,1917年5月6日臺灣東北部有 m1之記載,但筆者再詳細查閱臺灣地震目錄[12] 及理科年表[6]之災害地震年代表,均找不到海嘯 之記錄。

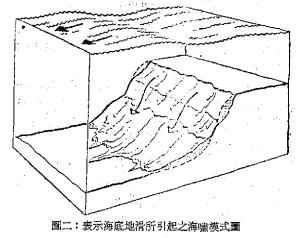
1951年10月22日 海嘯:地震規模7.3,震失在 花蓮東方,花蓮附近發生大災害,死者68人,傷者 856人,房屋損害2.382 戶,花蓮驗潮儀有海嘯記 錄,波高幾十公分而已,m為-1。

1960年5月24日 海嘯:此次為智利海嘯,傳 播至臺灣,波高在基隆為66公分花蓮為30公分。 基隆市田寮港運河之橋墩(日式木造橋) 被浮木衝 毁,而海水呈汚濁[13]。

1963年10月13日 海嘯:地震規模M為 7.0, 震

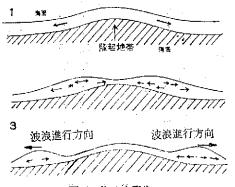

央在千島列島,花蓮有十幾公分海嘯痕跡[13]。

1964年3月28日 海嘯:此次海嘯前面已述, 在花蓮驗潮站有最大波高15公分之海嘯痕跡[13]。


三、海嘯發生之機制及其傳播

對水面,突然加以力量就會產生波浪,落在池 塘的石頭衝擊也會引起同心圓狀的波列。這些現象 我們日常可以觀察。在大洋,因地震,火山爆發, 地滑以及樣子試爆等等,會引起大規模同樣的效應 。這些事件所引起之一連串的波浪,具有莫大的能 量而以很大的速度進行,而侵襲人口密集的海岸時 ,往往發生驚人的破壞力。

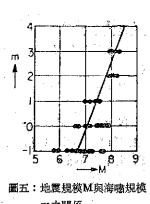
關於地震海嘯之發生機制主要有兩種。一為傾 向滑斷層(dip slip fault)所引起者。如圖一, 沿傾斜面,因發生急激的岩石破壞,而作用於海底 下地殼岩石的張力釋放出來的結果就是斷層。發生 這種傾向滑斷層時,斷層之一邊的巨大岩石塊急激 降落而另一邊者急激上昇。因此由海底至海面的水 柱,受擾動,而由此送出一連串的波浪,這種現象 就是海嘯。


圖一:表示傾向滑斷層所引起之海嘯模式圖

另一為因地震而發生的地滑所引起者。如圖 ,地滑發生在海面下相當的深度,海面也會發生擾 動。

總而言之,大地震在海底下發生時,海底會發 生地變,因此地變——傾向滑斷層或者地滑——如 圖三,海水發生動搖,波浪向四周傳播。

那麼海底地震是否每次都會引起海嘯呢?關於 這個問題,Iida [14] 有詳細的研究。據 Iida 之 統計 1923 年至 1963 年日本近海海底地震中,54


次地震引起海嘯。圖四表示其結果。橫軸表示地震 規模 M, 而縱軸表示震源深度 H. 引起海嘯的地震 以黑點表示, 而圓圈表示沒有引起海嘯的地震。由 此圖可知引起海嘯的地震雖有三次例外, 都在直線 A 的右側。A線可用下式表示,

$$M = 6.42 + 0.017 H$$
 (1)

由此可知,震源深度較淺者容易引起海嘯而深度超 過80公里者很少引起地震。直線A和直線B間之海 嘯為波高小於4-6公尺者而直線B右側之海嘯表示 波高大於4-6公尺者。由此圖亦可知地震規模M大 於6.4 才會引起海嘯,但不是全部會引起海嘯,地 震規模M大於7.3的地震都會引起海嘯,而M大於 7.8的地震會引起大海嘯,波高大於4-6公尺,並 會發生災害。圖五表示地震規模M與海嘯規模m之 關係[15]。表二表示海嘯規模m,能量以及最大溯 上(maximum run-up)高度之關係[15]。

據Iida. (1970),海嘯規模m與距海嘯源10-300
 公里海岸之最大波高 η_{max} 之關係有下列 關係 →
 m=log₂ η_{max} (2)

km 30 B 000 ø 0, 0.00 0 o 60000000000000000000 0 0 000 00 H. . 00000 ø 震源深度 000000000000000000 40 000 0 0 000000000000000 ο . C -000000000000000 20 00 0 havoocoocoo a 0 . ; : <u>о</u> о n. 8 9 5 6 7 M 地震規模 有海嘯 o 無海嘯

m之關係

圖四:1923年至1963年日本近海海底地震規模M與震源深度H之關係

上式中 P 為壓力,ρ 為密度。	
連續方程參考不可壓縮的條件變爲	
$\frac{\partial u}{\partial n} + \frac{\partial v}{\partial y} = 0$	(13)
再設 ρ=1,φ 為速度位,	-
$\mathbf{u} = \frac{\partial \phi}{\partial \mathbf{x}} \mathbf{v} = -\frac{\partial \phi}{\partial \mathbf{y}}$	(14)
(14) 式代入 (13) 式可得,	:
$\frac{\partial^2 \phi}{\partial \mathbf{x}^2} + \frac{\partial^2 \phi}{\partial \mathbf{y}^2} = 0$	(15)
·由(12)式,可得	

$$P = \frac{\partial \phi}{\partial t}$$
(16)

我們可選擇

$$\phi = e^{i\omega t} (A\cos \lambda x + B\sin \lambda x) \times (C\cosh \lambda y + D\sinh \lambda y)$$
(17)

為(15)式之解答。

其次我們將考慮邊境條件。若果在海底沒有上 下钥運動 y=0, v=0, 故 D=0. 其次水面之變化 設為 ζ , y=-H 之壓力 P=-g ζ , 故

$$-\frac{\partial\phi}{\partial t} = \mathbf{g}\boldsymbol{\zeta} \tag{18}$$

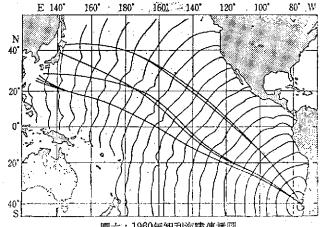
此外
$$\frac{\partial \zeta}{\partial t} = v$$
 (19)
所以

 $\frac{\partial^2 \phi}{\partial t^2}$ $= g \frac{\partial \phi}{\partial y}$

(17)式代入(20)式後可得,

$$\omega^2 = \lambda g \sinh \lambda H$$
 (21)
此式叫做色散公式。
設水的運動週期 T, 那麼
 $\omega = \frac{2\pi}{T}$ (22)

·又設 L 為波長・ $\lambda = 2\pi$


$$\sinh \frac{2\pi}{L} \mathbf{H} \neq \frac{2\pi}{L} \mathbf{H}$$
(24)

海嘯之傳遞速度 V

$$V = \frac{L}{T} = \sqrt{\frac{gH}{gH}}$$
 (25)

例如太平洋其平均深度約 4,000 公尺,海嘯傳 遞速度為 198 m/sec。如設其週期為 20 分,波長 等於238公里。由此可知我們假說波長比深度很大 是合理的。

如進一步考慮水的壓縮性以及海底運動,其結 果傳遞速度減小約 1.5%。 此外關於地球曲率之影 響,地球自轉之影響等也可以不顧[20]。實用上可 以式(25)計算。圖六為1960年智利海嘯傳播圖,等 值線表示每小時波峯位置[21]。

(20)

圖六:1960年智利海嘯傳播圖

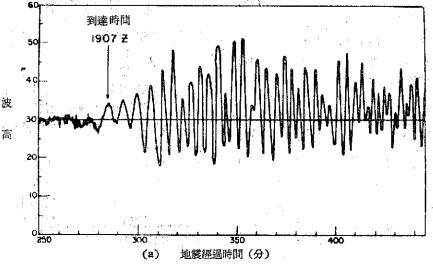
四、海嘯之破壞力及所引起之海洋工程災害

以前節所述的機制發生海水擾動在震源附近大 瓶不到1公尺,而以長波的速度傳播大洋中。在大 洋深海中波長達數百公里,波高只有1-2公尺,故 航行中的船舶通常並無感覺。因波長比水深很大, 故整個海水在振盪,到達淺海時,上下方向被壓榨

,波高變高。又進入海峽或港灣時左右方向受壓榨 ,波高更加增加。故在海岸的海嘯高度,會達到第 二節所述驚人的高度。

在沿海地區所觀測的海嘯高度受地形及來襲方 向等因子之影響很大。通常海底深度向陸地急激減 低的地方,地形呈利阿斯 (Rias) 型的海岸,海嘯 高度會急速增加。尤其U是字型或V字型港灣最顯

著。海嘯高度在距離很近的兩點相差甚多,係其受 地形影響之關係。


--- 8 ---

臺灣東部面臨太平洋,海岸線平直而單調,海 水又深,故雖有海嘯來襲過,但波高較低,故自有 地震現測以來還無災害記錄。

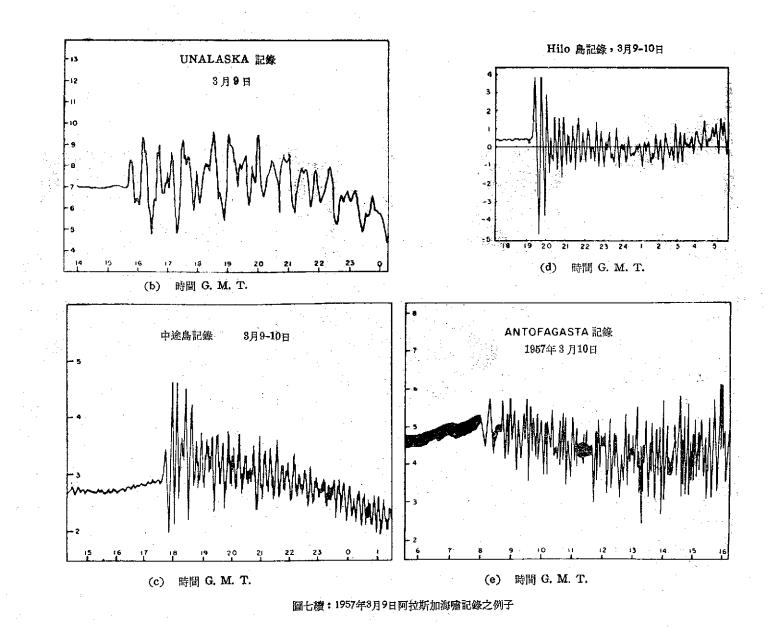
圖七為海嘯記錄之例子 [22]。(a) 為 Wake 島記錄,(b) 為 Unalaska 記錄,第三波最大, 第一至第二波峯週期差27分,(c) 為中途島記錄, 第一波最大,第一波峯至第二波峯週期為 12 分, (d) 為 Hilo 島記錄,第一波最大,第一波峯至第 二波峯週期為 19 分, (e) 為智利 Antofagasta 的記錄,第七波最大,第一波峯至第二波峯週期為 14分。

由這些例子可知,海嘯週期比風波長,自5-60 分左右,而第一波有時會拉波(退潮),有時推波 (漲潮),而第二至第三波會達到最大。

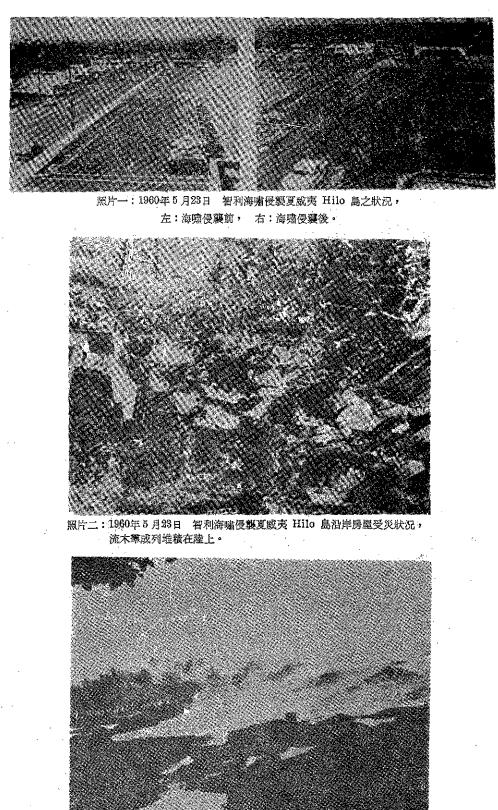
打到海濱上水流之最大速度,大約與海底之傾 斜成反比,與最大波高成比例,而與週期成反比。 故在向外洋呈V字形的港灣裏,水流的速度變成很 大,可達 8-12 m/sec. 水壓與流體密度和速度的

平方成比例而據結構物之受災情形,由大石頭被冲 上陸上,船舶被漂至陸上等現象估計,水流的側面 力 (lateral force) 為2噸/平方公尺至8.8噸/平 方公尺,平均約為3.4/噸平方左右〔23〕,又據松澤 〔19〕之估計至少數噸/平方公尺。

海嘯所引起的災害:

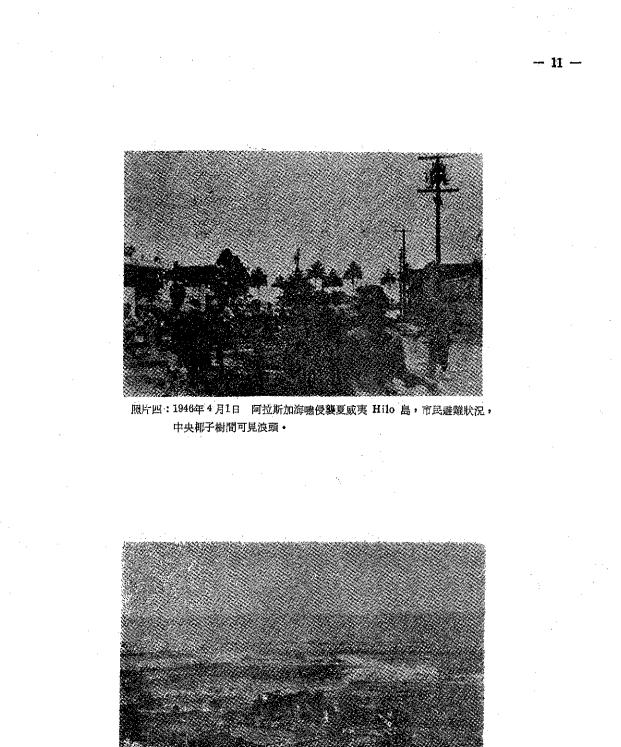

海嘯侵襲時所引起的災害,可以說隨着海嘯地 帶之開發程度而異,在無人住的地方當然不會發生 災害。而隨着人口的增加,開發度的提高,遇到海 嘯時,其災害愈大。在未充分開發的地區,所受災 害有房屋損壞,浸水,流失,人畜被溺,或田園浸 水,流失等。房屋損壞原因有二,一為海嘯所帶來 强大水壓,另一為船舶,木材,流冰以及其他漂流 物的衝擊。而受災的程度隨着地形而不同,各地相 差很大。

在人口密集高度開發的地區,海嘯帶來的災害,除上述以外還有下列等項目。例如:漁船,遊艇, ,腐船,甚至於軍艦等冲入內陸,冲設燈塔,碼頭 倉庫,辦公廳舍,家具,機械類,大的如吊車,起 重機,汽車,火車,橋墩,鐵路,公路,岸壁,防 波堤,護岸設施排水溝,水道,運河,有時電桿, 大樹等連根被拔起。照片1至8表示海嘯侵襲及受 災狀況。


通常木造房屋被推毁的程度比較嚴重,而鋼筋 混凝土或鐵骨結構物受災較輕。木造房屋往往被會 冲至遠處,而地面發生嚴重浸蝕。正面開放或使用 玻璃,而後面牆壁封閉者災害特別大。强大結構物 之下游的較弱結構物,受災較輕。鐵骨架和鐵皮牆 房屋除了海嘯衝力特別大和漂流物多的地方以外, 通常不會發生災害。

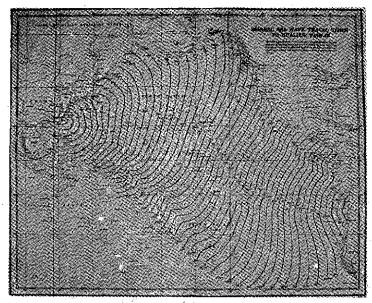
公路及鐵路的損設是很平常的,但有時地下鋪 石被捲起變成石頭堆。鐵軌有時自枕木脫落,而捲 在樹幹或障害物。橋梁的損壞通常為橋基受侵蝕, 有時橋面被冲走。火車車箱被冲離鐵軌而顚倒。

值得注意的是, 樓下無牆或高蹻式 (stilts)的 結構物受災很輕,此外浮遊物的穩定度有時是令人 異想不到人的, 在 Oahu 島 Kweia 灣有一房屋被 "沖走至餘60公尺內陸的甘蔗園, 而穩定地停止。



φ

照片三:1946年4月1日 阿拉斯加海嘯侵襲夏威夷島北岸之狀況。


- 10 --

照片五:1950年5月24日 智利海嘯侵襲北海道庶野港之状況。

- 14 --

圖九:花蓮海嘯到達時刻預報圖

5. 1. 12

表三:日本氣象應海嘯預報文及其謬明

預報文	說	明
L無 海 嘯	沒有海嘯來襲	
2.注意海嘯	可能發生海嘯,但以目前	資料無法預報海
	嘯高度	
3.溺 海 嘯	可能發生小海嘯,最大可	達約公尺,容易
	發生大海嘯地區應戒備,	其他地區波高大
·	約數千公分・	· .
4.大 海 嘯	可能來襲大海嘯,而引起	大災害・最大可
	違約公尺・過去有海嘯災	害的地區或者容
	易引起大海嘯的地區應嚴	加戒備,其他地
	區波高大約1公尺,也要	戒備。
5.解除海嘯	已經沒有海嘯。	

收集太平洋沿岸各地地震站及驗潮站之資料。當地 震發生時,太平洋沿岸各地的地震站,立刻以無線 電通報海嘯警報中心即火奴魯魯觀象臺,該中心立 刻應用與近地地震海嘯研判相同方法,判斷是否引 起海嘯,如會引起海嘯,即通知震央附近的諸驗潮 站,詢問是否觀測海嘯,並請囘答。如實際發生海 嘯,中心就根據海嘯到達時刻預測圖,向參加比警 報網的各站報告,地震情況,各地觀測的海嘯高度 以及到達各地的預期時間等。

其後日本,菲律賓,秘魯,巴拿馬,智利,紐 西蘭等國家陸續參加此系統,我國中央氣象局於民 國49年智利海嘯發生後才參加。原先是利用美軍臺 灣協防司令部的通訊系統,自中美斷交後,美方由 民用航空署 (FAA), 而我方由民航局負責辦理。

海嘯警報網在1960年5月22日海嘯時已發生效力。在夏威夷島 Hilo 市災害總額比1946年者更多

,但是市民聽到警報及時避難,故死者只有少數。 海嘯對策;

海嘯的災害在短時間發生而在短期預報雖然相 當有效,但即不知何時會發生。從防災的看着,在 海嘯常侵襲的地方必須做以下各種對策。

1. 建造海嘯公園:在 Hilo 市在海岸地帶建造 公園, 而在智利海嘯發生效力。

 2.建造防潮堤:防潮堤與防波堤不同,建造在 陸上,北海道霧多布為其一例。

建造防波堤: 在 U 字型或 V 字型灣口建造
 防波堤以減低海嘯勢力。

4.造林:在海岸地區多種樹,藉以減低海嘯勢力。

5.製材場應設在比較高的地方,避免木材變成 浮有物,冲毀房屋等。

6.海岸地帶鼓勵多蓋堅固的鋼筋或鋼骨水泥房 屋,藉以減低海嘯勢力。

7.在設計防海嘯結構物時,結構物長的方向盡 量與預期海嘯方向平行,藉以抵抗水壓。如與預期 海嘯方向平行,再建造剪力牆(shear wall)更 佳。結構蓋在高蹻(stilts)也應考慮。許多近代 結構已採用這種方式,而一樓做停車場或庭園。如 一樓不能做上述用途,一樓當做預備犧牲的,採用 比較輕的外牆。

六、結 語

本文介紹地震海嘯之定義,世界各地歷年來發 生的大海嘯,以及臺灣過去所記錄的海嘯。其次討 論海嘯發生的機制,地震與海嘯的關係,海嘯的能 量,以及海嘯傳播的情況。然後記述海嘯在大洋的 情況,在海岸附近受地形的情況,並擧實際觀測例 子,估計海嘯的破壞力。接着介紹海嘯對海岸工程 設施的災害狀況,並以照片表示受災狀況及海嘯實 際來襲的狀況。最後介紹近地及遠地地震所引起的 海嘯預報方法,以及海嘯的防災對策,以供從事海 嘯預報工作人員及海岸工程人員之參考。

我們知道臺灣地區雖然海嘯不是常常侵襲的地 區,但有好幾次海嘯記錄,而有一次大海嘯引起嚴 重災害。因此在各港灣,尤其是基隆港,不得不考 慮這種事實。日人寺田教授曾經說,「天災在被忘 記的時候會來襲」,可以做參考,時時注意,以免 遭遇到海嘯來襲時,造成不必要的損失。

參考 文 獻

- Miller, D. J. (1960): The Alaska earthquake of July 10, 1958: giant waves in Littuya Bay, Bull. Seis. Soc. Am., 50, 253-266.
- [2] Van Dorn, W. G. (1968): Tsunamis. Contemp. Phys. 9: 145-164.
- [3] Heck, N. H. (1947): List of seismic sea waves, Bul. Seis. Soc. Am., 37, 269-286.
- [4] Imamura, A. (1949): List of tsunami in Japan, Zisin, Ser. 2, 2: 23-28.
- [5] Murty, T. S. (1977): Seismic sea waves, Tsunamis, 337 pp.
- [6] 東京天文臺(1971):理科年表,地144-171.
- [7] Bascom, w, (1964): Waves and Beaches, 288 pp.
- [8] 今村明恆(1942):日本津波史,海洋の科學 ,2(2),74-80.
- [9] Iida, k. (1958): Magnitude and energy of earthquakes accompanied by tsunami and tsunami energy,

J. Earth Sci., Nagoya Univ., 6 (2), 101-112.

- [10] Davidson, J. W. (1903): The island of Formosa, past and present, 646 pp.
- [11] 劉行灼(1962):海嘯雜話之四,氣象所簡訊,第206期,5-7頁。
- [12] 徐明同(1980):臺灣地震目錄,臺大地震工 程研究中心,77頁。
- [13] 徐明同(1964):地震與海嘯,氣象所簡訊, 第256期,1-4頁。
- [14] Iida, K. (1965): Earthqunake magnitnde, earthquake fault and source dimensions, J. Earth Sci., Nagoya Univ., 13 (2), 115-132.
- [15] Iida, K. (1963): Magmtude, energy and generation mechanism of tsunamis and a catalog of earthquakes associated with tsunamis, Proc. Tsunami Meeting 10 th Pacific Sci. Cong., IUGG., Monopraph 24, 7-18.
- [16] Iida, K (1970): The generation of Tsunamis and the focal mechanism of earthquakes, Tsunamis in the Pacific Oceans, East West Center Press, 3-18.
- [17] Gutenberg, B. and C. F. Richter (1956): The energy of earthquakes, Q. J. Geol. Soc. London, 112, 1-14.
- [18] Takahashi, R. (1951): An estimate of future tsunami damage along the Pacific coast of Japan, Bull. Earthq. Res. Inst., 12-178.
- [19] 松澤武雄(1950) 地震學, 341-348.
- 〔20〕 土屋瑞樹(1961):日本の地震波研究,測候時報,28,413-421,445-451,474-478.
- [21] Watanabe, H. (1964): Studies on the tsunamis on Sanriku coust of the northwetern Honshu, Japan, Geophy. Mag., Tokyo, 32 (1), 1-64.
- [22] Salsman, G. G. (1959): The tsunami of Merch 9,1957, as recorded at tide stations, U. S. C. & G. S., Tech. Bull. No. 6.
- [23] Wiegel, R. L. (1970): Tsunamis, Earthquake Engimering, Chapter 11, 253-306.
- [24] 和達淸夫(1970):津波,高潮,海洋災害, 377頁。

- 15 -

氣象學報第二十七卷第一期(70年3月)

臺灣地區農業氣候區域之劃分

Division of Agriculture-climate Zone

in Taiwan Area

郭文樂 楊之遠

Wen-Shuo Kuo Chea-Yuan Young

ABSTRACT

Taiwan climate is of subtropical character, But due to the topography and geographic position, the classification of climate is diversified. With a view to make an appropriate agriculture climate division in Taiwan area, five different methods of classification are introduced respectively. By comparison and evaluation, three of the five methods are eventually adapted, they are (1) the comparison of correlation coefficient of monthly precipitation and monthly average temperature among stations. (2) hythergraphic analog method. (3) classification by multivariate method. Synthesizing the results of these three methods, nine different agricultural climatic zone in Taiwan are objectively classified with respective climate characteristic in conclusion, It is supposed that the result of classification could be referred to for agricultural resources planning and agriculture-weather forecast.

摘

.

渔

臺灣屬副熱帶氣候,面積不大,但由於地形與 地理位置之影響,其氣候類型頗為複雜,本研究為 了深入瞭解本省各地農業氣候之特性,乃根據一百 餘所測站之溫度,雨量資料、利用五種氣候分區方 法,將臺灣地區分為不同之農業氣候區域,經過比 較分析各區分結果,採用相關係數比較法與濕溫圖 法二種方法藉之結果與規劃本省農業氣候區域之架 構,再藉多變值區分法來評定分區界線,予以適當 修正,將本省農業氣候區域綜合規劃為東北區、西 北區、中彰區、雲嘉區、西南區、南部區、東岸 區、東部山區、中部山區等九個農業氣候區。該區 分結果較為精密,可提供設置農業生產專業區,厘 訂各區農作物安全栽培時序,以及農業氣象預報分 區之參考。 一、前 言

臺灣氣候應屬副熱帶性,全島南北之氣溫差異 不大,但地形複雜,中央山脈、雪高山脈、玉山山 脈、阿里山脈等高山,由北至南縱互於島之中央, 由平地到高山,由於氣溫直減率,可包括熱、溫、 寒三帶。同時受季風影響,而山脈走向與盛行之季 風相交,造成臺灣北部與南部雨量之季節性變化顯 着差異。一般而言,冬季各月東北季風盛行,北部 為雨季,而南部則為乾季;夏季西南季風盛行,南 部為雨季,北部為乾季。此外臺灣為一海島,位於 亞洲大陸的邊緣,在氣候上兼受大陸性氣團的相互 影響,故其面積難不大,氣候類型頗為複雜。臺灣 雖有高溫多雨之優越條件,使得作物生長的季節很 長,農作時序之安排較為密集,但臺灣氣象災害亦 多,因此如何有效地運用臺灣之農業氣候資源,並

- 16 -

--- 17 ---

對全島氣候做一精密的區分,藉以做為農業區域規 劃、農業氣象預報之參考,實為當前農業氣象發展 之重要課題。

國內曾有許多學者對臺灣氣候區域加以劃分, 例如蔣丙然(1954)⁽⁵⁾利用柯本氏(Köppen's system)分類法,以年平均和月平均氣溫、雨 量、土生植物為標準,將臺灣分成六種類型:

Cf_a一東北部溫暖濕潤氣候

CW。一西部溫暖冬季少雨氣候

AW—西南部熱帶冬季少雨氣候

Af—東南部熱帶雨林氣候

Gcf。一中部山地溫暖濕潤氣候

GDW—中部高山冬季少雨寒冷氣候

應用柯氏之分類方法來區分臺灣之氣候區域,未盡 理想,例如將新竹縣、花蓮縣及臺東縣北部之平地 劃分在 Cf。氣候區,實際上東西兩岸氣候廻然不 同;同時臺南市、高雄市兩地之日照、雨量集中於 夏季、蒸發量高、冬季乾燥,在氣候上宜屬同一類 型,但利用柯氏方法,却將臺南市劃在 CW。區, 高雄市劃分於 AW 區。

陳正祥 (1947)⁽⁴⁾ 根據桑士偉新分類法(Thornthwaite's system),利用潤濕指數 (Moisture index) 及有效溫度 (Thermal efficiency),將本省氣侯區分為下列八區:(1)東北區 (2)北部區(3)西南區(4)南區(5)東岸區(6)中部山區(7)西 岸區(8)澎湖區。

陳氏採用桑土倖之分 類方法,可分為二十類 型,再藉主觀予以合併為八區,其區分結果雖屬合 理,惟其區分結果能否切合本省目前農業區域規劃 之應用,令人存疑。郭文鑅等(⁷)(1978)曾就本省 主要農作物之產量及產量變異係數分布,來劃分各 主要農作物之適栽區域,並未對本省之農業氣候區 域做綜合性之規劃。本研究擬以全省143所測站資 料,其分布如圖一,採用下列五種方法(1)測站逐月 平均氣溫及月降水量相關係數比較法,(2)濕溫圖比 較法,(3)多變値區分法(4)濕溫圖0値比較法(5)最暖 月與最冷月之雨量比値法等五種方法來綜合規劃本 省農業氣候區域,提供較為客觀的精確區分,進而 對本省各地之農業氣候特性做深入之研究。

二、臺灣農業氣候區域區分方法

各測站逐月降水量及逐月平均氣溫相關係數比 較法: (the comparison of correlation coefficient of monthly precipitation and monthly average temperature between two stations)

(1)相關係數的求法與意義:

r

根據統計學上求取相關係數的原則,計算本島 105 個專用測站間主要氣象因子相關係數,以顯示 各測站間氣象因子相關程度。相關係數愈高,則兩 測站間的氣象因子變化愈趨於一致,氣候亦較相似 ;如相關係數愈低,則表示兩測站間氣象因子變化 愈不一致,氣候差異愈大。本研究係以各測站的逐 月平均溫度和逐月雨量兩種氣象因子,分別計算其 相關係數,公式如下:

$$=\frac{\sum X_{1} X_{2} - \frac{(\Sigma X_{1}) (\Sigma X_{2})}{n}}{\sqrt{\sum X_{1}^{2} - \frac{(\Sigma X_{1})^{2}}{n}} \sqrt{\sum X_{2}^{2} - \frac{(\Sigma X_{2})^{2}}{n}}}$$

X₁:甲測站的逐月平均氣溫或總降水量 X₂:乙測站的逐月平均氣溫或總降水量

n:各組資料的總數(民國 60~64 年各測站逐 月降水量,逐月平均氣溫,每組各 60 個數據) (2)相同氣候區相關係數標準的決定

選擇中央氣象局所屬 14 個測站為基準點,以 月降水量及月平均氣溫,分別進行相關分析,見表 一。根據其彼此相關係數的大小,參考各基準站間 的距離地形及海拔高度,訂定隸屬同一氣 候區測 站間相關係數的標準:兩測站間氣溫 相關係數在 0.994 以上,且雨量相關係數在 0.800 以上者,則 此兩測站識屬於相同的氣候區。

(3)不同氣候區之劃分

(i)參考測站隸屬的行政區域,以及陳正祥、 蔣丙然以往的分區資料,將106個測站初步劃分為 七組,以便於進行相關分析,而後分別計算各測站 間氣溫及雨量之相關係數,做成相關表。

(ii)相關係數達於標準的測站,劃歸同一氣候 區;相關係數小於標準的測站,則予以剔除,並歸 倂於其他氣候區,再進行相同的分析步驟,經過多 次的分析比較,將本島規劃成數個不同的氣候區。

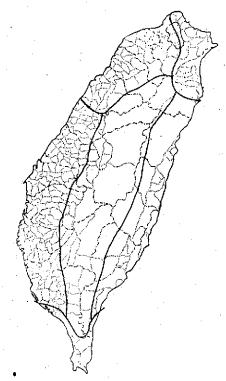
(4)不同氣候區間的分界點與分界線之決定

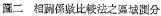
(i) 在進行分組比較測站 間相同係數 過程中, 將溫度、雨量相關係數達於標準的測站用直線相連 ,未達標準者則用圓圈標示,此等測站應為氣候區 的邊界上或其外圍。

(ii) 某一測站如與不同象限之鄰近測站間,其 相關係數均達標準,惟不同象限間之測站,其相關 - 18 -

表一 本省主要測站間溫度、雨量相關係數

· ·		宜蘭	臺 北	淡,水	新竹	臺中	日月潭	嘉義	臺南	高雄	恒春	大 武	臺東	新港	花蓮
冝	蘭		997	995	995	989	975	989	976	974	975	984	992	995	997
臺	北	325		999	99 8	991	979	987	976	974	974	982	989	994	997
淤	水	447	858		999	990	978	986	975	973	973	981	987	993	995
新	竹	109	852	782		992	979	989	980	978	977	983	990	994	996
螷	中	-074	629	453	650	1.0	991	997	995	993	989	989	991	989	991
日月	潭	065	718	548	703	933		986	985	985	985	983	983	981	982
賣茄	義	032	634	520	646	883	8 31		995	995	991	991	992	989	989
臺	南	092	728	577	618	764	802	886		998	990	985	984	976	977
高	雄	133	586	420	516	678	752	774	863		994	987	985	977	977
恒	春	339	516	3 80	317	454	525	639	678	837		994	990	982	979
大	武	455	496	42 8	314	429	507	583	545	703	928		996	991	989
臺	東	521	350	347	159	282	343	393	346	524	812	927		998	995
新	淃	580	247	340	090	115	205	222	162	3 19	628	764	883		998
花	蓮	699	274	357	080	030	139	224	186	288	572	707	822	884	


* 右上角為各測站溫度相關係數,取小數點後三位數字。 左下角為各測站雨量相關係數,取小數點後三位數字。



未達標準,則比測站可視為不同象限(氣候區)間 之一界點。

(iii) 連接各界點,構成各氣候區間之分界線, 如測站稀少地區則根據自然地形特徵(如河流、山

脊)予以分界。

各區域的分界線一經確定後,即可明確地表示 各氣候區的範圍,分界線所通過的測站為不同氣候 區間的過渡地帶。 (5)結果

根據相關係數比較法,可將臺灣地區劃分為六 個氣候區,如圖二。

I.東北區——本區的分界線大致沿淡水河向 東南,再順着新店溪上游方向,進入宜南縣境,以 太平山和大南澳南溪為界,包括臺北縣和臺北市的 東部靠山部分,以及宜蘭縣境的蘭陽平原。

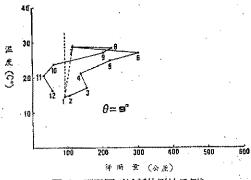
Ⅱ.西北區——本區與鄰區的分界線大致沿淡 水河、基隆河、新店溪,在烏來附近順南勢溪向西 南經塔克金溪上游,最後沿大安溪入海,包括臺北 縣和臺北市的西部,以及桃園、新竹、苗栗沿海平 原。

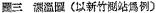
Ⅲ.西區——本區則以大安溪以南至屏東縣西 北部,整個西部500公尺等高線西側的沿海平原。

Ⅳ. 南區——本區包括中央山脈以南的恒春半 島以及臺東縣大武以南的沿海平原。

V. 東區——本區北起大南澳南溪,南至臺東市以南,大致上為中央山脈以東的沿海平原。

Ⅵ. 中部山區──本區包括中央山脈以及中央 山脈以西的山區,全區的海拔高度大致高於 500 公 尺。


(6)討論


相關係數比較法的優點,在於利用各測站的逐 月氣溫及逐月雨量進行相關分析,可定量地比較各 測站間主要氣象因素變化的差異,藉以獲得客觀的 分析結果。臺灣南北氣溫差異甚小,而雨量則受季 風及地形的影響,平原和山地之間、向風坡與背風 坡之間的降雨量差距皆很大,因此在決定謎屬同一 氣候區之相關係數標準時,溫度與雨量甚難一致; 同時中部山區地形較為複雜,使得部分測站與其鄰 近測站間的雨量相關係數未能達到標準,如利用本 方法則難以對山區做更精細的分區。故上述相關係 數標準(氣溫 0.994,雨量 0.800)似不適用於山 地,若降低標準,則難以對山地與平地做合理的劃 分。

同時氣象因素之選擇亦甚重要,通常進行氣候 相關分析時均採用月平均最低氣溫,而本省部分專 用測站缺乏最低氣溫觀測,因此本研究採用平均氣 溫進行相關分析。由於各地平均氣溫差異較小,導 致各地氣溫相關係數皆很高,故如何決定主要氣象 因素及相關係數之標準,實為應用相關係數比較法 之最大困難。 2.濕溫圖比較法 (The hythergraph comparative methed):

(1)濕溫圖 (Hythergraph) 給製的 方法與意義:

本方法係利用中央氣象局所屬 14 個測站及本 省106 個專用測站,合計123 所測站,根據各測站 歷年(民國50~64年)之氣象資料,計算歷年的月 平均氣溫及月平均降雨量,以降雨量為橫座標,氣 溫為縱座標,將各測站的歷年的月平均氣溫及月降 雨量標分別填於座標圖,依序連接各點,即為各測 站之濕溫圖,如此可得123 種濕溫圖,圖三爲以新 竹測站為例之濕溫圖。

濕溫圖可顯示出當地氣溫和雨量之季節性變化 趨勢,因此濕溫圖相類似的測站,表示其彼此間氣 溫和降雨量的變化趨勢近於一致,比較不同測站濕 溫圖相似程度,則可區分為不同的氣候區。

(2)不同氣候區之劃分

利用濕溫圖之相似類型,做為判斷各測站之氣 候相似性的依據常失之主觀,本研究為減少主觀判 斷之誤差,根據下列四種原則做為圖形分類的參 考:

(i) 根據逐月連接各點的變化方向, 而分為順時 鐘, 逆時續兩種。

(ii) 濕溫圖中各 測站最高 月平均氣溫 與最低月 平均氣溫的差距(卸氛溫年較差)。

(iii) 濕溫圖中各測站最高月降雨量與最低月降 雨量的差值(即雨量年較差)。

 (iv)根據上述三項原則仍無法歸類的測站 ,則 據其地理位置所在,劃為不同氣候間的過渡地帶。
 (3)結果

比較各測站濕溫圖之相似性,可將臺灣地區劃 分為六個氣候區,見圖四。 - 6 -

表二: 在日本海嘯規模, 能量及最大溯上高度

海嘯規模	海嘯	能量	最大 濒 上 高 度		
m	ergs	ft-1b	m	ft	
5	25.6×1023	18.9×1016	> 32	> 105	
4.5	12.8	9.4	24-32	79-105	
4	6.4	4.7	16-24	52.5-79	
3.5	3.2	2.4	12-16	39.2-52.5	
3	1.6	1.2	8-12	26.2-39.2	
2.5	0.8	0.59	6-8	19.7-26.2	
2	0.4	0.29	4-6	13.1-19.7	
1,5	0.2	. 0.15	3-4	9,9-13,1	
1	0.1	0.074	2-3	6.6-9.9	
0.5	0.05	0.037	1.5-2	4,9-6.6	
0 "	0.025	0.018	1-1.5	3.2-4.9	
-0.5	0.0125	0.0092	0.75-1	2.5-3.2	
-1	0.006	0.0044	0.50-0.75	1.6-2.5	
-1.5	0.003	0.0022	0,30-0,50	1.0-1.6	
-2	0.0015	0.0011	< 0.30	<1.0	

(7)

關於地震規模與海嘯規模 m 之間有下列 Iida [15] 公式

m=(2.61±0.22)M-(18.44±0.52) (3)
 據 Gutenberg 和 Richter [16], 地震能
 並 E_s (單位為 erg) 和地震規模M有下式關係,
 leg E_s=11.8+1.5 M (4)
 由上列兩式可得
 leg E_s=22.4+0.6m (5)
 或者

54 B

面

 $\mathbf{E}_{s} = \mathbf{E}_{o} \times 10^{0.6 \,\mathrm{m}} \tag{6}$

 $E_{c} = 2.5 \times 10^{22} \text{ ergs}$

據 Takahashi [17], 海嘯規模 m 與海嘯能 量 E. 有下列關係,

 $\mathbf{E}_{t} = \mathbf{E}_{e'} \times 10^{0.6} \mathrm{m} \tag{8}$

E_。'=2.5×10²¹ ergs (9) 因此由(3)式和(8)或可得,

log E_i=21.4+0.6m=10.3+1.5M (10) 比較(4)式和(10)式,可得,

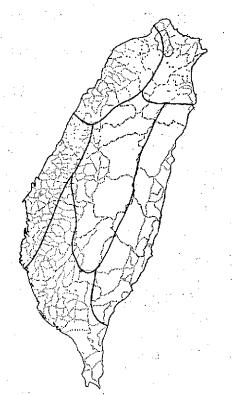
$$\frac{E_{s}}{E_{t}} = \frac{E_{o}}{E_{o}'} = 10$$
 (11)

由此可知海嘯能量為地震能量(指地震波能)之約 十分之一。

表三為 Iida [15] 所得結果,支持上述結論。

表三:海嘯能量 E_t 與地震波能量 E_s

-	地	度	地震規模 M	地震波能 E。	海嘯能量 E,
智	利	(1960年5月22日)	8,5	10 ²³ ergs 35.5	10 ²⁸ ergs 3.0
Ξ	陸	(1938年8月2日)	8.3	17.8	1.7
南海	瀢	(1946年12月20日)	: 8.1 .	. 8.9	0.8
≁	膨	(1952年3月4日)	8,1	8.9	0.8
東南	海	(1944年12月7日)	8.0	6.3	0.79
靑	森	(1945年2月10日)	7.3	0.56	0.004


海嘯傳播的情形: 為了簡單起見我們做下列幾點假說,而探討海 嘯之傳播情形 [19],

1.考慮二因次情況
 2.海水為不可壓縮流體
 3.海水運動為無渦旋
 4.海水深度為一定

5.不顧表面張力

設 x 軸沿海底而取水平方向,而 y 軸垂直向 下方,y=-H 為平均水面,u, v 依次為 x, y 方 向之速度。 $u\frac{\partial h}{\partial x}$, $v\frac{\partial u}{\partial y}$, $u\frac{\partial v}{\partial x}$, $v\frac{\partial v}{\partial y}$ 等依次很 小故可以不顧,運動方程變成,

$\rho \frac{\partial \mathbf{u}}{\partial \mathbf{t}} = -$	∂P	··· 1 ·	
$\rho \overline{\partial t} = -$	∂x	l l	(10)
∂v	∂P	ſ	(12)
$\rho \overline{\partial t} = -$	дy	· J .	

圖四 濕溫圖比較法之區域劃分

I. 東北區——本區沿淡水河及新店溪,包括新 店溪以東,三星山以北的地區。本區之氣候特徽為 終年雨量豐富,無乾旱季節,冬季雨量多於夏季雨 量,雨量年較差約在500公厘以上,氣溫年較差約 在15°C以上,冬夏季節明顯,濕溫圖為順時針 方向。

II. 西北區——本區包括淡水河以南,新店溪以 西,大安溪以北的地區。本區之氣候特徵為冬季兩 量略多於夏季雨量,有明顯冬季與夏季,雨量年較 差約 200~500 公厘, 氣溫年較差約 15°C,濕溫 圖為逆時針方向。

Ⅲ. 西岸區──本區包括大安溪以南,臺南市以
 北,中央山脈 500 公尺等高線以西的沿海平原。本
 區氣候特徵為夏季雨量豐富,多季乾燥,沿海地區
 容易發生旱害。雨量年較差約 300~400 公厘,氣
 溫年較差為 10~15°C,濕溫圖為逆時針方向。

Ⅳ. Ⅳ西南區——本區包括西南海岸至東側山麓 地帶,以及恒春半島。本區之氣候特徵為夏季雨量 特多,冬季乾旱。雨量年較差在 300~600 公厘, 氣溫年較差在 10°C 以下,尤其五月至九月的月 平均氣溫,其差距很小,濕溫圖為逆時針方向。

Ⅴ. 東岸區——本區包括三星山、南澳以南、大

武以北、中央山脈以東的沿海平原。本區氣候特徵 為夏秋兩季雨量高於春冬兩季,而以九、十月最高 ,冬季雨量雖少但不乾旱。雨量年較差約300~600 公匪,溫度年較差約10~15°C,濕溫圖為順時針 方向。

Ⅵ. 中部山區──本區包括中央山脈,以及中央 山脈以西山地。本區以氣候特徵為夏季雨量特多, 最高月降雨量皆在六月,多季及夏季之溫度差較小 。雨量年較差約 300~700 公厘,氣溫年較差約在 10°C 以下,濕溫圖為逆時鐘針方向。

(4)討 論

本方法係根據各測站濕溫圖之相似性予以區分 ,如測站間之逐月平均溫度及降雨量之變化趨勢相 似,則彼比問溫度及雨量相關係數亦很高,因此理 論上由濕溫圖比較法所區分之氣候區應與相關係數 比較法所區分者相似。惟相關係數比較法係以定量 之數值標準做為客觀判斷標準;而濕溫圖比較法則 根據圖形分類之原則,其判斷具有主觀成分較多, 因此區分結果難免與相關係數比較法所得者有所差 異。除西南部及南端半島地區有較顯着的差異之外 ,其餘大部分如東北部、西北部及東部地區之區域 界線非常相似。

3.多變值區分法 (Classification by multivariate method)

(1)多變值區分法之方法及意義:

本區分法係利用統計方法,測驗測站間之溫度 、雨量有無顯著差異性,而將無顯著差異之數測站 合倂為同一氣候區,其方法係根據全省104所測站 1971~1975 年間各年之逐月 平均溫度 及月總降雨 量,取各站溫度及降雨量 60 組資料(5年×12月))平均值 μ₁=(μ₁₁,μ₂₁)

μ₁₁ 為第i站之溫度平均值

μ21 爲第 i 站之雨量平均值

測驗擬說 $Ho: \mu = \mu_2 \dots = \mu_k$ 能否成立,若此擬 說成立,表示此 K 站之溫度、 雨量無顯著差異, 可倂為一氣候區。但統計上欲測驗上述擬說成立, 必須以擬說 $Ho: \Sigma_1 = \Sigma_2 = \dots = \Sigma_k$ 成立之條件-為前提。

 $\Sigma = \begin{pmatrix} \sigma_{11} & \mathbf{\sigma}_{12} \\ \sigma_{21} & \sigma_{22} \end{pmatrix}$ 為變積矩陣 (Covariance matrix) $\sigma_{mn} = \frac{1}{N} \sum_{i=1}^{N} (X_{mi} - \overline{X}_{m}) (X_{ni} - \overline{X}_{n})$

- 21 -

σ₁₁, σ₂₂ 分別為溫度、雨量之變方(Variance)
 σ₁₂=σ₂₁ 為溫度與雨量之變積(Covariance)
 即先必須測驗此K站之變積矩陣相等後,才能測驗
 其平均值是否相等,故本分區法可分為下列二步驟
 進行:

(i) 測驗各站變積矩陣是否相等,即測驗擬說 $H_0: \sum_{1=2} = \dots = \sum_{k} 是否成立⁽²⁾,$

其詳細步驟如下:

①求共同變積矩陣
$$\hat{\Sigma}_0 = \frac{1}{\sum\limits_{i=1}^k N_i} \sum\limits_{i=1}^k N_i \hat{\Sigma}_i \circ$$

②求測驗統計量(test statistics) Σ

$$\Sigma = \left(\sum_{i=1}^{k} N_{i}\right) \ln \left| \hat{\Sigma}_{0} \right| - \sum_{i=1}^{k} N_{i} \ln \left| \hat{\Sigma}_{1} \right|^{\circ}$$

P 為各站之變數個數,本研究考慮溫度、雨量 變數,故 P 值為 2 。

④ Box (1949)⁽¹⁾指出 MC⁻¹ 近似於自由度為
→ (K-1) P (P+1) 之 χ² 分布 , 故將 MC⁻¹
與理論 χ³ 値比較 , 若 MC⁻¹ 小於 理論 χ² 値
(1%顯著標準値) , 則表示此K站之變積矩陣可
視為相等,可繼續進行次項平均值差異顯著 測驗;
如 MC⁻¹ 値大於 理論 χ³ 値 , 表示此 K 站之變
積矩陣有顯著差異,此時則將測站減少或重新 調整
後 , 重覆上述步驟 , 以求得能合為一區之測站組
合。

(ii) 測驗各站溫度、雨量平均值是否相等 , 即擬
 說Ho:μ₁=μ₂=……=μ_π 是否成立⁽³⁾。

①求組內平方和矩陣 (Within Sum of Square matrix) W

 $W = \sum_{i=1}^{k} \left(\sum_{i=1}^{N} (X_{in,ji} - \overline{X}_{in,j}) (X_{in,ji} - \overline{X}_{in,j})' \right)$ (m,n=1,…P)及總平方和矩陣 (total sum of square matrix) T

$$\mathbf{T} = \sum_{i=1}^{K} \sum_{i=1}^{N} (\mathbf{X}_{mi} - \overline{\mathbf{X}}_{m}) (\mathbf{X}_{ni} - \overline{\mathbf{X}}_{n}) \circ$$

W 矩陣相當於各站平方和矩陣之總和,表示 各站個別差異之總和,T矩陣則為綜合各站之 總變異,故W矩陣越接近T矩陣,表示各站 間之平均値變異越趨於一致。

②求測驗統計量 / = |W|

③計算 $F = \frac{1 - \sqrt{\Lambda}}{\sqrt{\Lambda}} \left(\frac{N - K - 1}{K - 1} \right)$,與自由度 為 2 (K-1), 2 (N - K - 1) 之理論 F 值比 較,若大於理論 F 值 (1%顯著標準值),表 示此K站間之溫度、雨量平均值有顯著差異 存在,站數應予減少,並重覆上述測驗步驟, 俟其F 值少於理論值後,將該等測站各倂為 一氣候區;若該K站之F 值小於理論值,則 此K站可合倂爲同一氣候區,並可加入附近 測站,重覆上述測驗步驟,測驗其F 值是否 顯著,以確立氣候區之範圍,表二爲 X² 及 F 分布理論值。

(2)結果:

利用多變值區分法,將兩站以上變積矩陣及平均 值差異不顯著者合為一區,則全省可劃分為十一 小區,如圖五,分別為;

- I.東北區:包括臺北縣四堵(A 18)、桃園縣 復興鄉澤仁(C 10)、高義(C 08)、巴嗪 (C 12)及宜蘭全縣除去南澡站,包括玉蘭 (U 10)、宜蘭(708)、太平山(U 04)及漢 尾(U 24),共八站。
- Ⅱ.西北區:包括臺北市(692)、桃園縣楊梅 (C 16)、石門(C 05)、澤仁(C 10)、榮華 (C 13)、新竹市(757)、新竹縣關西(D 21)、 五峯(D 08)及苗栗縣南庄(E 18),共九 站。
- II. 中彰區:包括臺中市(749)、(F 03)、臺中 縣清水(F 40)、后里(F 60)、彰化縣彰化 市(G 04)、二林(G 19)、員林(G 30)、 南投縣南投(H 56)、名間(H 64)、竹山 (H 14)及雲林縣斗六(F 01),共十一站。
 N. 雲嘉區:包括雲林縣斗六(J 89)、虎尾 (J 20)、東勢(K 13)、麥寮(J 89)、北港 (J 74)、口湖(J 59)及嘉義縣東石(L 30)

- 22 --

表二 x*及F分 布 现 論 値

		· 1-a	5		1-a		
ĸ	X ²	0.95	0,99	Fe(K-1); 2(N-K-1)	0.95	0,99	
2	χ^2 3	7.8	11.3	F2.114	8.08	4.81	
3	χ^2_6	12.6	16.8	F4112	2.46	3,50	
. 4	χ ^s s	16.9	21.7	P 6:110	8.19	2,99	
5	X ² 12	21.0	26,2	F _{8,103}	2.04	2,69	
6	χ^2_{15}	25.0	30.6	F10,106	1,93	2.51	
7	χ^2_{18}	28.9	34.8	F _{12,104}	1,85	2.38	
8	X ² 81	32,7	38.9	. F14-103	1,80	2 29	
9	X ² sc	36.4	43.0	F15-100	1,76	2,21	
10	χ^2 27	401	47.0	F 18.08	1,73	2.15	
11	χ^2_{so}	43.8	50.9	F20,98	1,70	2.10	
12	χ^2 38	47.1	54.0				
13	* X ^Z 30	50.7	57.8				
14	χ^2_{59}	54.3	61,6	-			
17	χ^2_{48}	64.9	72.9			с. С. 2	
24	χ^2_{69}	89,1	98.4				
29	X ² 84	106.1	116,3			•-	
32	X ² ss	116.2	126.8				
36	χ^{2}_{105}	129,6	140.8		· · ·		

註:K為站數。

P 爲變數個數值為 2 。

α為顯著水準。

N馬重複數值為 60 。

、 布袋 (L 51)、 嘉義市 (748) 及臺南縣柳 營 (O 30), 共十站。

- V. 臺南區:包括臺南縣七股 (N 70 73)、柳
 營 (O 30)、玉井 (N 48)、左鎭 (N 37)、
 新化 (N 89)、臺南市 (No9. 741. N11),
 共九站。
- WI. 高屛區:包括高雄縣田寮(P 27)、燕巢(P 37)、永安(P 72)、高雄市(744)、小港(P 53)及屛東縣九如(Q 39)、屛東(Q 04)、 萬丹(Q 08)、南州(Q 84),共九站。

上述(3)、(4)區間、(4)、(5)區間又可彼此重叠, 表示這些小區間溫度、雨量之分布均具有延續性。

- Ⅶ 南部區:包括屏東縣 南州(Q 84)、恒春 (759)、(Q 80)及臺東縣大武(754),共四 站。
- W. 花東平地區:由宜蘭縣澳尾(U 24),經花 蓮縣花蓮(699)、壽豐(T 39)、光復(T 48)
 ,延伸至臺東縣新港(761)、卑南(Q 20)、
 臺東(S 04)、(766)、大武(754),共九站。

☑. 花蓮山區:包括花蓮縣秀林 (T 11)、林田山 (T 54)、高嶺 (T 53),共三站。

X. 臺中中部區:包括臺中縣和平(F 09.F 32.
 F 33) 及新社(F 75),共四站。

X1. 南投區:包括南投縣 南投(H 56),竹山
 (H 14)、鹿谷(H 48.49.50)、集集(H 71)

、魚池 (765. H 36. H 32)、信義 (H 54. 38),共十一站。

各小區計算所得 MC⁻¹ 値及 F 值見表三。 (3)討論:

多變值區分法與上述之相關係數比較法及濕溫 圖比較法同樣的自考慮測站間溫度、雨量之變化情 形來劃分氣候區域,惟多變值區分法除考慮測站間 溫度、雨量之變化趨勢是否一致外,亦同時考慮各 測站溫度及降雨量平均值差異之顯著性,因爲測站 間之溫度、降雨量雖有相同之變化趨勢,亦未必表 示其溫度、雨量之平均值是來自同一族羣,因此多 變值區分法利用統計方法測驗各測站間溫度、雨量 之變積矩陣,及平均值是否相等,亦即客觀地檢訂

— 23 —

表三 多變值區分法各小區包含之測站及 MC-1 F 值

區別	包含測	站	站數	MC ⁻¹	F
東 北	A18, U (10,04,24), 708,C (12,08,10)		8	34.7*	1.9*
西北	692,C (16,05,10,13), 757,D (21,03),E18		9	39.1*	09
中彰	F (60,40,03), 749,G (04,30 19),H (56,14),F01	,	10	39.5	0.1 ~
雲嘉	F01,J (20,89,74,59),K13,L (30,51),748,030		10	37.3	01
臺 南	O30, N (70,73 09,11,89,37,48), 741	1. 	9	38.4	0.2
高 屛	P (72,27,37,53), 744,Q (39,04,03,84)	N 2 1 1	9	30.1	0.04
屛 南	Q (84 80),754,759		· 4	3.7	1,4
花東平地	U24,699,T (39,T (39,48`,761,766,S04,Q20,754		. 9	40.3*	1.3
花蓮山地	T (11,54,53)		- 3	16.1*	2,1
臺中中部	F (32,33,75,09)		4 ·	12.0	1.2
南 投	H (36,32,56,71,54,50,14,49,38,48),765		11	50.8*	1.1
	694,E01,A18,703		4	158	1.3
	690,692	·	2	2.4	0.02
	C (16,05,10,18),757,D (21,08),E (18,04)		9	40.1*	1.1
	E (18,04),F (32,33,75,09)		6	28.1*	1.8
	749,F (60,32 75)		4	21.4*	1.2
	G19,H14,F01,J (89,20),K13		6	21.2	02
	L51,O30,N (70,73)	. 1	4	0,8	0.03
	701,N (09,11,89,37,48),P (27,72,37)	- 3	9	41.8*	0.2
	T09,H20,699,T (39,48)	·	5	24.7*	1.5
	765,H (32,36,38,50,54,71,49,48,87)		10	42.5*	0.9

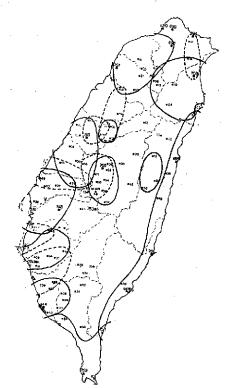
湖站間溫度、雨量之變異及平均值差異是否顯著, 較之前述二者均為嚴密。惟此法分區所得之氣候區 類型較多,氣候區所包含之測站站數較少,鄰近小 區間之測站常發生重叠,可視為不同氣候區之過渡 地帶,在西南部平原地區尤為明顯。

4.濕溫圖θ値法 (Hythergraphic θ Value method)

(1)濕溫圖 θ 值的決定與意義

本方法係利用前述方法繪製的濕溫圖,將濕溫 圖上一月與七月的兩點相連接,測量二點連線與縱 軸平行線之夾角 θ,見圖三,根據各測站θ値繪製 等值線分布圖。

各測站濕溫圖之θ値可顯示出當地一月與七月 的雨量及溫度之變差。如氣溫的年變化不大,θ値 的大小主要決定於雨量的變化。θ値愈大,表示當 地一月與七月的雨量差距愈大;若θ値愈小,則表 示當地一月與七月的雨量差距愈小;θ值為負,則 顯示當地一月的雨量大於七月的雨量。


濕溫圖之θ值可表示當地受季風影響之程度。

當θ值為0時,表示當地年雨量分配均匀,冬夏季 之降雨量並無差異;θ值為負時,表示當地受東北 季風影響,冬季之降雨多於夏季;反之當θ值為正 時,則當地受西南季風之影響較大,夏季降雨多於 冬季;如θ絕對值愈大,則冬夏季之降雨量差異亦 愈大,亦表示受東北季風或西南季風之影響程度愈 大。

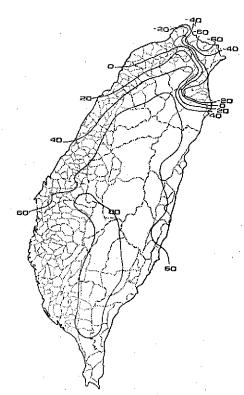
根據123所測站之濕溫圖θ値,以每20,度為 間隔,繪製θ值分布圖,見圖五。

(2)討論:

由圖五可看出θ値自東北及西北部之沿海地區 向南部及內陸地區逐漸增加,臺北、桃園之沿海鄉 鎭及宜蘭縣之蘭陽平原均為負値,以基隆、瑞芳、 萬里等地為-40至-60度為最低値,此表示本省東 北部及北部沿海地區受東北季風之影響至爲明顯, 愈向南部,則等值線由中央山脈向兩側呈對稱之鐘 形而逐漸增加,以南部山區(包括嘉義縣之梅山、 義竹、吳鳳,高雄縣之三民、桃源、六龜、茂林, 屏東縣之三地、霧臺、瑪家、泰武、三義、臺東縣

圖五 多變値區分法各小區劃分

之海端、延平、卑南、金峰、達仁等鄉鎮)為最高 ,達 80 度以上。此表示本省除西北部及東北部之 沿海地區以外,各地受西南氣流之影響程度由北至 南面明顯增加,以南部山區所受之影響為最大。故 利用0值分布可作為區分本省東北及西南季風影響 分界線之參考。但是由於未能考慮比較各地全年氣 候之變化趨勢,無法對局地做精細之區分。

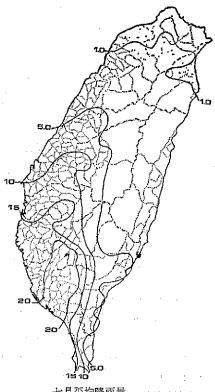

濕溫圖之θ值亦可表示氣溫年較差。本省西北 部及東北部地區牢溫較差較大,約 15°C,南部年 溫差則較小,此蓋由於地理位置及地形因素,冬季 本島受大陸氣團影響程度僅及於北部地區。

5. 七月平均降雨量/一月平均降雨量比值法

(The precipitation ratio between July and January)

(1)七月平均降雨量/一月平均降雨量比值法之意 義。

利用各測站歷年平均七月與一月降雨量之比値 ,可表示當地最暖月與最冷月之降雨量差距,間接 顯示受東北部或西南季風之影響程度,如比値小於 1,表示冬季的雨量多於夏季,受東北季風的影響 較為明顯,如比値大於1,表示夏季雨量多於冬季 ,比值愈大,表示受西南季風的影響程度亦愈大。

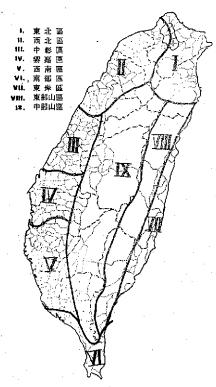

圖六 濕溫圖θ值等值線分布

本研究採用 128 所專用測站及中央氣象局所屬 15所測站,合計 143 所測站,依上述方法分別計算 其七月平均降雨量與一月平均降雨量之比值,分別 標訂,繪製成圖(圖六),根據該比值分布,可瞭 解本省各地多夏季之雨量差距分布情形,亦可找出 西南季風及東北季風影響區域之分界線。

(2)討論

七月及一月平均降雨量比值係表示一種最暖月 及最冷月降雨量差距之指標(Index),其意義與 前述濕溫圖θ值所表示者相似,惟濕溫圖θ值不僅 考慮一月與七月之降雨量差距,亦包涵有年溫差比 較之成份,而比值法僅為一種表示多夏季雨量差距 的單純指標,故比值分布由東北至西南逐漸增加, 而與θ值分布呈對稱鐘形分布者有所不同。

根據比值法亦能劃出本省受東北季風與西南季 風影響之分界線,該(比值等於1)分界線與利用 θ 值(θ值為0)所得者極為接近,同時比值法僅 考慮一月與七月之降雨量差距,未能比較各地全年 之氣候變化趨勢,故其分布僅可看出受季風之影響 程度,亦無法含有局地性的變化,僅可做為區分之 參考。



三、臺灣農業氣候區域之劃分結果

本研究用以劃分臺灣省農業氣候區域之上述五 **種方法,就性質而言可分為兩類,第一類包括濕溫** 圖θ值法與七月降雨量/一月降雨量比值法,係着 重於最暖月與最冷月之雨量或溫度的差異,可顯示 季風影響的程度與範圍,但無法對局地作精細的區 别**,**第二類包括相關係數比較法、濕溫圖比較法及 多變值區分法,係考慮全年氣候差異之比較,其區 分結果具有實用性。濕溫圖比較法係藉圖形類比, 以定性方式來比較測站雨量、溫度之變化趨勢;相 關係數比較法則以統計結果的定量方式作爲劃分標 準;而多變值區分法同為定量式的,復進一步作 F 值檢驗,考慮測站間溫度、雨量平均值之顯著性, 較為嚴密,惟規劃結果之氣候區域多達 11 種類型 。為棄顧實用起見,本研究採用相關係數法及濕溫 圖法二種方法之區分結果爲規劃本省農業氣候區域 之架構,再藉多變值區分法之結果來評定分析分區 界限,做適當修正後,將本省農業氣候區域綜合劃 分為下列九區,見圖七:

(-)東北區:本區包括淡水河、基隆河、新店溪以東

圖八 本省農業氣候區域之規劃

•三星山以北的地區,位居本省東北角,多季受東 北季風之影響而多雨,日照時數很少,十二、一月 之月平均日照時數僅 75 小時,約為西南平原之一 半,山麓地帶多夏雨量分配平均,無明顯之乾季, 而基隆沿海一帶,冬季雨量超過夏季,常常使二期 水稻發生水(雨)害,復由於地形之影響,夏季侵 襲之颱風亦常為本區帶來豪雨,使農作物罹受災害 ,故本區栽培農作物常受水災之威脅。本區年溫差 較大,約 15℃,有明顯之冬夏季,平地最冷月之 平均氣溫超過 15℃,故一般短期作物一年可以二 作。

由於本區雨量多,濕度大,日照相對較少,水 害及颱風災害頻率亦高,故栽培之熱帶作物之產量 較本省各地為低。

〇西北區:本區包括淡水河、基隆河、新店溪以西 ,大安溪以北地區,平原與丘陵相間,位居本省西 北部。多季因受大陸高氣壓南下之影響,氣溫較低 而且風勢甚强,本區年溫較差約 15°C 左右,最冷 月之平均氣溫低於 15°C,農作物偶有寒害發生, 降雨雖以六月至九月較多,但多季雨日甚多,亦不 乾旱,十一月至二月之月平均日照時敷約 75~100 小時。桃園、新竹、苗栗沿海一帶冬季之東北季風 甚强,農作物罹受風害之類率很高,因此冬季之强 風與低溫成為本區農作物栽培之氣候限制因子,一 般熱帶作物如香蕉、鳳梨、甘蔗等,本區不適宜栽 培,現行栽培作物除水稻以外,以柑桔與茶葉最多 ,即係受低溫與强風之影響。

(三中彰區:本區包括大安溪以南、西螺溪以北、中 央山脈西側之平原地區。本區氣候特徵為夏季多雨 、冬季乾燥,年雨量較差約 400~450 公厘,年溫 差約 15°C ,最冷月平均氣溫約 15°C 但因臺中地 區在地形學上屬於構造盆地,東側有雪高山脈,西 南方有大肚臺地,在冬季每當寒潮發生時,於滴合 輻射霜形式條件下,冷空氣亦不斷會沿雪高山脈自 東北方流入盆地, 使農作物發生霜害之機會很大, 故本區冬季栽培農作物應愼防寒 (霜) 害。但由於 山脈屏障,夏季颱風對本區農作物所造成災害損失 程度較其它各地為輕,二期水稻之產量亦較穩定, 年日照充足,冬季各月日照時數約125~175小時, 一般熱帶作物如甘蔗、香蕉、鳳梨等亦可以栽培。 個雲嘉區:本區包括西螺溪以南、八掌溪以北、中 央山脈西側之平原地區。本區氣候與中彰區相似, 其特徵為夏季多雨、冬季乾旱,尤其沿海地區冬季 因缺水、多風,常常發生旱害。本區年溫差較小, 約在 12~13°C 間,最冷月平均氣溫約 16~17°C ,故冬季裏(作)栽培面積很廣。但是因偶發性之 强烈寒潮常使本區發生結霜,因此一期水稻秧苗及 甘藷、甘蔗、鳳梨等作物常發生霜害。本區冬季裏 作應防霜害,沿海地區亦應加强灌溉措施及防風林 之栽培。

(因西南區:本區包括八掌溪以南、屛東縣東港、南 州以北、中央山脈西側之平原地區。本區氣候特徵 為雨量集中於夏季,多半年有長達五、六月之旱季 ,日照充足,因此多季裏作及一期水稻栽培均依水 庫灌溉。年溫差較小,約10°C,最冷月平均氣溫 約18°C,故本區作物栽培季節很長,無多季低溫 限制,熱帶果樹如芒果、荔枝、龍眼、鳳梨及香蕉 等,栽培面積很廣。惟因夏季多颱風及豪雨,農作 物常罹受風害及水害,尤其梅雨季節之豪雨常使本 區之一期水稻及熱帶果樹遭受損失。本區因平均氣 溫較高,全年均可栽培作物,惟因冬季乾旱,因此 必須注意灌溉系統之加强。

(內南部區:本區包括中央山脈南端之恒春半島,分 界線經過屏東縣新園、東港、南州、牡丹及臺東縣 之達仁、大武。本區位居本省南端,兩量多集中於 夏季、冬季乾旱,日照充足,最冷月平均氣溫約在 18°C以上,年溫差約9°C以下,本區冬季雖具 有日照充足,氣溫高等有利之氣候資源,但因受特 殊位置之影響,冬季季風很强,恒春地區於冬季極 端最大風速可超過20公尺/秒,復因乾旱,故冬 季栽培作物較爲困難,目前裏作僅限於低莖之烏豆 、洋葱,及瓜類。夏季侵臺之颱風,其路徑常通過 本區或附近,本區栽培作物歷年曜受颱風災害頻率 爲全省之首,沿海地區常發生海水倒灌,故本區農 業之發展,尤須注意農作時序之安排、調整,以避 亮氣象災害之損失,方能利用其豐富之日射量及溫 度等氣候資源。

出東岸區:本區包括北起宜蘭縣南澳,經過花蓮、 臺東縱谷,南至大武以東之沿海及平原地區,本區 北段氣候近似於東北區,全年雨量分配較平均,多 季雨日較多,日照較少,年溫差約11~12°C,最 冷月平均氣溫約17°C,南段氣候與南區相似,雨 量多集中於夏季,年溫差約10°C,最冷月平均氣 溫約18~19°C。本區農業栽培以臺東縱谷為主, 海岸山脈及沿海地區,山勢陡創、河流急湍,故灌 溉系統缺乏,雜糧作物如玉米、落花生等常發生旱 害,夏季颱風通過本省中部地區,本區首當其衝, 栽培作物常櫂受損失,本區南段氣溫較高,日照亦 甚充足,非常適宜栽培各種熱帶作物包括香蕉、鳳 梨、甘蔗等,惟應注意颱風及乾旱之預防。

(八東部山區:本區包括中央山脈陵線以西,大南澳 溪以南,東岸區以東之山脈地區,本區地勢皆在海 拔 500 公尺以上,年降雨分配較為平均,以九、十 月最多,年溫差約 11°C,最冷月平均氣溫視高度 而定,常低於 10°C,本區山勢陡直,山坡地之開 發應注意水土保持,近年來柑桔、枇杷等果樹栽培 甚多,惟因夏季颱風侵襲時,本區居於迎風面,故 推廣溫帶果樹需考慮颱風災害之冒險率。

他西部山區:本區包括中央山脈陵線西側海拔 500 公尺以上之山區,本區氣候特徵為夏季受西南氣流 影響,雨量充沛,以六月最多,常超過 500 公厘, 多季少雨,但仍較平原地區為多,年溫差約 10~ 13°C,最冷月平均氣溫視海拔高度而定,可低至 10°C以下,多季偶有霜雪。本區山勢較為緩和, 近年來臺中、苗栗、南投等縣之山區已開發至相當 規模,海拔 2000 公尺以上之地區,溫帶果樹如蘋 果、桃、梨等栽培面積甚廣,南投附近山區因多季

- 27 -

濕度適宜,茶作栽培面積很廣,南部如高屏、臺南等 地之山區,因冬季雨量較少,茶作栽培受到限制。 表四係各農業氣候區之氣候特徵。

表四 各 農 業 氣 候 區 域 之 氣 候 特 徵

區别		▲ 跌 苻 俶
〔 東北區	(1)冬夏季雨量分配平均,最暖月與最冷月之雨量比	(1)夏季颱風災害
LKAE	值為 0.5~1。	(2)冬季之水(雨)害
	(2)冬季雨日較多,各月日照時數為 75 小時,較夏	
	季爲少。	· · · · · · · · · · · · · · · · · · ·
	(3)濕溫圖變化爲順時針方向。	
	(4)年溫差在 15°C 以上。	
	(5)最冷月平均温度大於 15°C。	
Ⅱ酉北區	(1)冬夏季雨量分配平均,最暖月與最冷月之雨量比	(1)沿海地區冬季之季風害
	值為 0.5~4 ·	(2)冬季低溫寒害
	(2)冬季各月日照時數約75~125小時,較夏季為少。	(3)夏季颱風災害(沿海地區海水倒灌)
	(3)濕溫圖為逆時針方向。	
	(4)年溫差約 15°C。	
	(5)最冷月平均温度低於 15°C。	
Ⅲ 中彰區	(1)夏季雨量多,冬季乾燥,最暖月與最冷月之雨量	(1)冬季低溫之寒(霜)害
	比值為 4~6 。	
	(2)冬季各月日照時敷約 150~175 小時。	
	(3)濕溫圖為逆時針方向。	
,	(4)年温差約 15°C。	
	(5)最冷月平均温度約 15°C。	
Ⅳ雲嘉區	(1)夏季雨量多,冬季乾燥,最暖月與最冷月之雨量	(1)冬季低溫之寒(霜)害
· · · ·	比値為 7~15。	(2)沿海地區冬~春季之旱害
	(2)冬季各月日照時敷約 150~175 小時。	(3)五、六月梅雨之水(雨)害
	(3)濕溫圖為逆時針方向。	
	(4)年溫差約 12~13°C。	
	(5)最冷月平均氣溫約 16~17°C。	
V 西南區	(1)冬乾夏濕益形明顯,最暖月與最冷月之雨量比值	(1)夏季颱風災害
	爲 15~20 。	(2)五、六月梅雨之水(雨)害
	(2)冬季各月日照時數約175小時。	
	(3)濕溫圖為遊時針方向。	
	(4)年溫差約 10°C。	· · · · ·
	(5)最冷月平均温度約 18°C 。	
VI 南部區	(1)冬乾夏濕,但程度稍緩,最暖月與最冷月之雨量	(1)夏季颱風災害
	比值為 5~20。	(2)冬季季風災害
	(2)冬季各月日照時數約 150~175 小時。	
. 4	(3)濕溫圖為逆時針方向。	
	(4)年溫差在 9°C 以下。	
	(5)最冷月平均温度均在 18°C 以上。	1

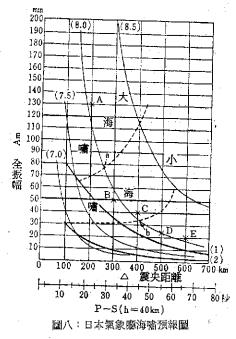
照片八:1964年3月27日阿拉斯加海嘯,在 Valdez 市阿拉斯加路海嘯侵 襲後之光景

五、海嘯之預報及其對策

我們已經知道海嘯是隨伴海底地震的現象。雖 地震預測的原理到現在為止還在研究的階段,但海 嘯之預報比較容易。即大地震發生後,研判其規模 以及海底地變,判斷是否發生海嘯,然後推算到達 預報地區的時間,及海嘯規模。

海嘯預報原前上可分為近地地震引起者及遠地 地震引起者。關於近地地震引起者,效介紹日本氣 象聽[24]之方法。

地震發生後在氣象廳立刻做下列作業


i) 決定震源, 地震規模及發震機制。

ii) 判斷海嘯規模

iii) 推定海嘯到達時刻及海嘯狀況

經過以上程序後才發表預(營)報。震央要在 海底,而地震規模 M 大於 6.4,且震源深度淺於 80公里,才會引起海嘯,如在地方測站,可根據圖 八,以當地所測的最大全振幅及震失距離可以判斷 海嘯是否發生。海嘯到達時刻可以先做預測圖如圖 九,而利用之。因近地地震發生後至海嘯來襲之時 間很短,故上述作業必須在短時間內完成才有效。 日本氣象廣海嘯預報文說明如表三。

關於遠地大地隱所引起的地震,因當地不感覺 有地震,故來襲之預報方法與上述稍不同,需要國 際間之合作。

1946年4月1日黎明,自阿留申列島傳播來的 海嘯忽然侵襲夏威夷島 Hilo 市,最大波高達16公 尺,造成嚴重災害。美國海岸大地測量局 (U.S. C.& G.S.) 有感於此海嘯對於人民生命財產安 全影響之嚴重, 開始籌組太平洋海嘯警報網系統 (Seismic sea ware warning system)以火 奴魯魯(Honolulu Observatory)為中心,負責

		1	1	
VI	東岸區	 (1)夏季降雨多於冬季,但程度稍緩,最暖月與最冷月之雨量比值在5以下。 (2)冬季各月之日照時敷約50~100小時。 (3)濕溫圖爲順時針方向。 (4)年溫差約11~12°G。 (5)最冷月平均溫度約17°C。 	(1)夏季颱風災害 (2)沿海地區之旱害	
VII	東部山區	 (1)夏季降雨多於冬季,最暖月與最冷月之雨量比値 在 10 以下。 (2)冬季各月之日照時數約 50~100 小時。 (3)濕溫圖為順時針方向。 (4)年溫差約 11°C。 (5)最冷月平均溫度可低達 10°C。 	(1)夏季颱風災害	
IX	中部山區	 (1)夏季降雨多於冬季,尤以南端較為明顯,最暖月 與最冷月之雨量比值約 5~20 之間。 (2)冬季各月日照時數約 100~150 小時。 (3)濕溫圖為逆時針方向。 (4)年溫差約 10~13°C。 (5)最冷月平均溫度可低至 10°C 以下。 	(1)春季之晚霜喈	-

四、結

- 28 -

論

天氣預報之應用效果。

參考 力 獻

- 1. Box. G. E. P. 1949 A peneral distribution theory for a ilass of likelihood criteria. Biometrika. Uol.36 pp 317-346
- 2. Donald. F. Morrison, 1976 Multivariate statistical method. P 247-253.
- 3. Richard. H. Lindeman, Peter F. M. & Ruth. Z. G 1980. Introduction to bivariate and. multivariate analysis. P 220-242.
- 4. 陳正祥 1957 氣候之分類與分區 臺大農學院 實驗林林業叢刊第七號。
- 5. 蔣丙然 1954 臺灣氣候誌 臺灣研究叢刊第二 十六種 臺灣銀行經濟研究室。
- 6. 劉衍准 1963 臺灣區域氣候之研究 師大學報 第八期。
- 7 郭文鑠 1978 臺灣農業氣候區域研究 中央氣 象局編印。

謝

本研究之經費承國科會補助,於進行期中,承 中央氣象局吳局長宗堯,預報中心同仁,臺大農藝 系沈副教授明來,提供寶貴意見,農業氣象科鄭技 佐淑賢協助,利用電子計算機整理有關資料,始得 **顺利完成**,誌此倂申謝意。

誌

本研究利用相關係數,濕溫圖及多變值區分法 三種方法,將臺灣地區分為九個農業氣候區,其中 以東北區、西北區、中部山區及東岸區之氣候具有 顯著之差異,而雲嘉區、中彰區及西南區等較為類 似,此項劃分結果較為客觀與精密,在農業應用上 可預期效益如下:

(1)提供設置農業生產專業區之參考----配合各氣 候區之氣候特徵及氣象災害資料,來選擇適合栽培 之作物,提高各氣候區之農業生產專業區所栽培作 物之品質與產量。

(2)提供調整農作物安全栽培時序之根據——因各 區域氣候特徵不同,故各區之各種農作物栽培之氣 依限制條件亦隨之而異,如能以各農業氣候區為單 位,釐定各區農作物之安全栽培時序,來避開各類 氣象災害之損失,用以有效利用本省豐富的農業氣 候資源,來增加農作物之產量。

(3)促進農業氣象預報區域之應用效果——現行農 業氣象預報區域,部分根據行政區域劃分,缺乏自 然基礎,如能根據本文劃分的區域作為發布天氣預 報的涵蓋範圍,既便於敍述地方性變化,對於各農 業機構及農友之實際應用亦易於了解,有助於發揮

以電子計算機研討氣象地圖之繪製

Application of Computer to the Meteorological Map-Making

徐月娟

Yueh-Jiuan Hsu

ABSTRACT

For meteorological application, the output of map by plotter or graphic display in not only accurate but also very convenient in case lalitude-longitude lines and sea-land distribution data are displayed together with meteorlogical data at the same time.

This paper introduces the globle sea-land distribution data and principle of map-making by computer and designs the subroutines which transform the globle sea-land distribution data into the locations on the maps of various type of map projections. Among five maps presented as examples, three are common projections with Taiwan island in the lower middle position of the map, two are specific for the convenience of typhoon practice in the western Pacific ocean thereby indicating that different accurate meteorological maps can be made by computer through the appropriate subroutines.

隨着電子工業快速的發展,電算機的使用逐漸 普遍,各種週邊裝置的設計也越臻完善。其中圖形 輸出裝置不僅速度快,而且由電腦計算可定位的很 精準,能作許多人手不易作到的事情。應用在氣象 的領域,則可作各種氣象圖表的輸出。若能將經 緯線及海陸地形分布的資料也一併儲存於電腦記憶 中,則無論使用繪圖機(Plotter)、圖形顯示器 (Graphic Display)或高速列表機,連同氣象 資料一併輸出,使用起來很方便。此外衛星觀測資 料,也需加上經緯線及地形的分布如能一併顯示出 來,才更能便於應用。

一、前

本文首先介紹全球海陸分布數據,並說明以電 腦繪製氣象地圖的原理,接着介紹三種常用的地圖 投影方法,設計列出從地球上某點經緯度值換算為 投影地圖上位置的電腦副程式(Subroutine), 提供應用;並由繪圖機繪製以臺灣地區為重點的東 亞氣象地圖,北半球氣象地圖,以及世界地圖。最 後又擧出數種實例,闡明靈活應用的方法。

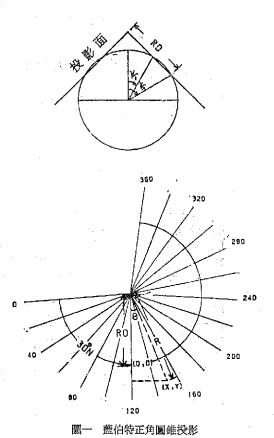
二、全球海陸分布數據

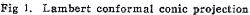
全球海陸分布圖中,沿海陸交界的地形線均為

營曲褶皺的曲折線,此套數據內容卽為沿地形線依 序各點位置的經緯度值。如取相鄰兩點間距離愈接 近,則精確度愈高。此套數據將全球各大塊陸地及 島噢,分成為205條封閉地形線來表示,而組成每 條地形線的經緯度座標點數不等,最長的一條地形 線表微歐亞大陸,共有2087點;其次為美洲大 陸,含1468點;再其次為514點的南極洲,以及 291點的澳洲,其餘的地形線皆少於200點。最短 的封閉地形線所代表的小島則含4點,因第一點與 最後一點的座標相同,故呈三角形。至於面積小於 3000平方公里的小島就不包括在此套數據之內。 臺灣島的地形線特以31點來表示,此處精確度最 高。

三、電腦繪製氣象地圖的原理

地球為一橢圓球體,通常吾人皆假設其爲圓 球,而以各種不同的投影方法,將地球表面的狀態 展示於一張平面圖上。任何一種投影,均有一定的 法則,能以數學方法導出地球表面某點經緯度値與 其在投影圖上位置的關係式,此位置係指相對於投 影圖上的原點(可按需要而定)而言,利用電子計 算機可以很精確迅速的計算出。當繪圖機啓動時, 繪圖筆所在的位置即為原點,欲以繪圖機繪製一條 地形線時,首先以繪圖指令控制繪圖筆抬起移至起 點的位置,接着將筆放下接觸紙面,移至第二點的 位置,再移至第三點的位置,如此繼續下去,直至 重回起點的位置,便完成了一條封閉地形線。繪製 經緯線的原理也大致類似,當繪製緯線時,需將緯 度值固定,經度值則以一個很小的增量(increment)連續改變,每算出下一點的位置,繪圖筆 即移動一步,如此便可在投影圖上繪出相當精確的 緯線。繪製經線時只要將經度值固定,緯度值連續改 變即可。因此,根據全球海陸分布數據可隨需求採用 還當計算公式,換算成某一種投影圖上相對於原點 的位置,即能繪製所需求的地圖,可以靈活運用。


四≥氣象地圖常用投影

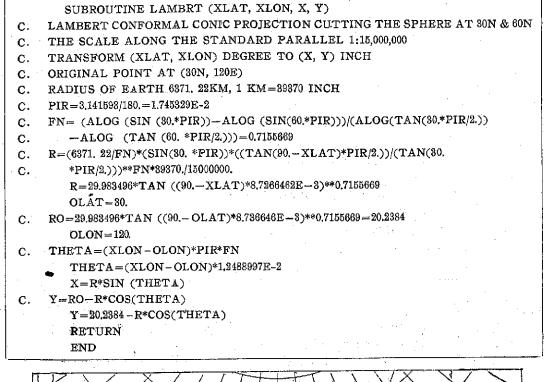

當地球投射於投影面上時,地球表面將受到各 **稙**不同程度的伸展與收縮。其實在地球表面,每一 ·種地理要素均有一定的形狀,佔有一定的面積,任 一點皆具有一定的方位角與方向。但在投影圖中, 這些性質必受影響,所能保持的正確性質,則依投 影型式而定。在氣象地圖上對於大氣型態的顯示, 必須力求保持確實的角度與形狀,故以圖上任一角 度均相當於地球表面上同一角度的正角 (Conformal) 投影為適用。 投影面切 (Tangent) 或 割(Secant)於地球之緯度稱為標準緯線(Standard Parallel), 在此緯度,投影圖上之距離 與地球上之距離恰好相等,投影比例 (Image Scale) 為一,而在其他緯度上投影比例均不為 一。至於地圖縮尺 (Map Scale) 對全圖而言乃 是一個常數,是地圖標準緯線上之距離與地球表面 上之相合距離的比值。地圖上任一點之眞實縮尺, 則為投影比例與地圖縮尺之乘積。

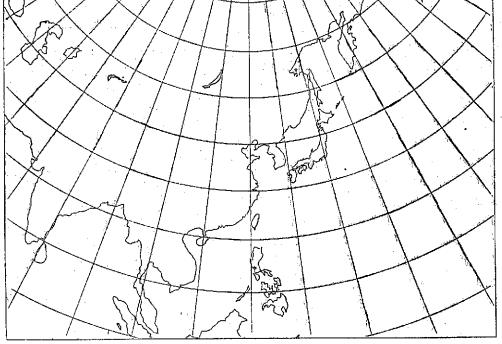
氣象地圖常採用之三種 正角投影⁽¹⁾ 為藍 伯特 正角圓錐投影(Lambert Conformal Conic Projection),極地平射投影(Polar Stereographic Projection)以及麥卡 特圖 柱投影 (Mercator Cylindrical Projection),分别 適用於不同的緯度範圍。

⇔藍伯特正角圓錐投影

此種投影面為一圖錐面,如沿經線切開再展成 平面,則成為圓面的一部份。投影面若割於 30°N 及 60°N (圖一),如此則自 25°N 至 65°N 間 投影比例尺變動最大不超過百分之七,為北半球中

緯度地區最適用的 正角投影。 臺灣地區 位於東經 120 度與 122 度之間,在東亞天氣圖上,宜在 120 東經度線垂直於水平座標的全圖中央略下方,(圖 二),方能高度適合 於臺灣地區天氣分析使用, 兹以北緯 30 度及東經 120 度為 原點,地圖 縮尺 為一千五百萬 分之一,設計 副程式 LAMBRT (XLAT, XLON, X, Y) 於表一,為使電算機 運算快捷起見,預先將已知條件計算成常數,而於 註釋卡片 (Comment Card) 中有詳細說明。 此副程 式將 地球 表面 已知 經緯 度 為 (XLAT, XLON) 之點,換算為投影圖上相對於原點之位 置 (X, Y)。首先計算 該點在投影 圖上緯度弧的 半徑 (Radius of Latitude Arc),參考圖一,

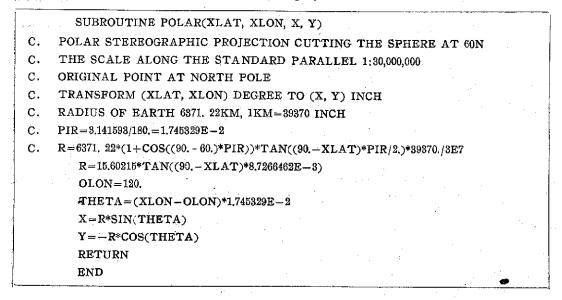

$$\mathbf{R} = \left(\frac{a}{n}\right) (\sin \psi_1) \left[\frac{\tan (\psi/2)}{\tan (\psi_1/2)}\right]^n$$
$$= \left(\frac{a}{n}\right) (\sin \psi_2) \left[\frac{\tan (\psi/2)}{\tan (\psi_2/2)}\right]^n$$


其中 ψ 為緯度的 餘角 , $\psi_1 = 60^{\circ}$ (30°N) , $\psi_2 = 30^{\circ}$ (60°N), a 為地球半徑 , n 為國錐常 數 (Constant of the Cone), 在藍伯特正角

袤一 藍伯特正面錐投影換算副程式

Table 1. Subroutine for the transformation of Lambert

conformal conic projection



圖二、 東 亞 氣 象 地 圖 Fig. 2. Eastern Asia meteorological map 表二 極地平射投影換算副程式

Table 2. Subrontine for the transformation of polar

stereographic projection

圓錐投影中,n<1

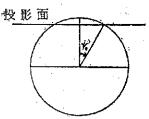
- 32 -

 $n = (\log \sin \psi_1 - \log \sin \psi_2)/$

 $[\log \tan(\psi_1/2) - \log \tan(\psi_2/2)]$

若 ψ=ψ₁=60°,即可計算出原點 (30°N) 緯度弧的半徑 RO,而該點與原點經線間之夾角 則為:

 $\theta = (XLON - 120^\circ) * n$


因此該點在投影圖上相對於原點之水平及垂直 座標為:

 $X = R \sin \theta$

 $Y = RO - R \cos \theta$

(二)極地平射投影

此類投影為正角個錐投影的一種極端情形,投影面趨近於極點,n=1,唯有此投影能納半球於 一幅圖中,而且比例尺變動較小,自極點向外增加,頗有規律,赤道上之比例尺較極點之比例尺約 大一倍。投影面若割於.60°N(圖三)則投影比例 尺平均變動較切於極點更小。臺灣地區適用的北半 球天氣圖,仍以東經120度線垂直於地圖的水平座 標最佳,極點在全圖中央或略為上方(圖四)。副 程式 POLAR (XLAT, XLON, X, Y) 列於 表二,以極點為原點,地圖縮尺為三千萬分之一。 其中緯度以北緯度為準,南緯度需加上負號;經度 以東經為準,西經必須以 360 度減之。首先計算投 影圖上該點與極點間之距離(參考圖三)。

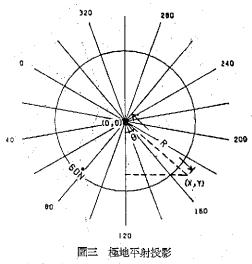
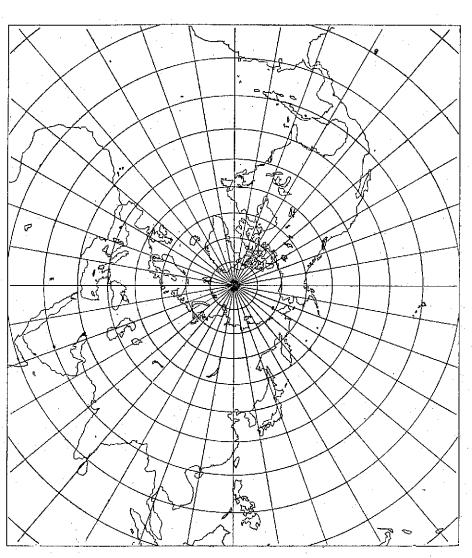
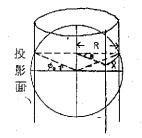



Fig 3. Polar stereographic projection

圖四、北 半 球 氣 象 地 圖 Fig. 4. Northern Hemisphere meteorological map

R=a (1+cos ψ_0) [tan ($\psi/2$)]

其中 $\psi_0 = 30^{\circ}(60^{\circ}N)$, 再計算通過該點之經 線與東經 120 度間之夾角 θ 。該點在投影圖上相對 於極點之座標即為:


 $X=R \sin \theta$

$$Y = -R \cos \theta$$

曰麥卡特圓柱投影

這是正角圓維投影的另一種極端情形,投影面 趨近於赤道,爲圓柱面,n=0,圖上經緯線均為 直線且互相垂直,度數相等之經線間的距離在圖上 各處均相等(圖五)。高緯度地區變形特別大,但 在南北緯 20 度間之近赤道地區,比例尺變動則小 於百分之十,適用於熱帶範圍。以南北緯 22.5 度 為標準緯線的麥卡特投影圖上所展示的全幅世界 地圖如圖六。自地球表面已知經緯度為(XLAT, XLON)之點,換算為投影圖上位置的副程式 MERCAT (XLAT, XLON, X, Y, OLAT, OLON, AM)列於表三,其中(OLAT, OLON) 表示原點的緯度及經度, AM 則代表地圖縮尺。 首先計算標準緯線上的緯度圈半徑(Radius of Latitude Circle),參考圖五,

 $R = a \cos (22.5^{\circ})$

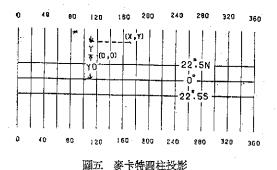


Fig 5. Mercator cylindrical projection 若該點與原點經線間夾角之徑度為θ,該點之 水平座標即為:

 $X = R\theta$

Table 3. Subroutine for the transformation of Mercator

cylindrical projection

表三 麥卡特圓柱投影換算副程式

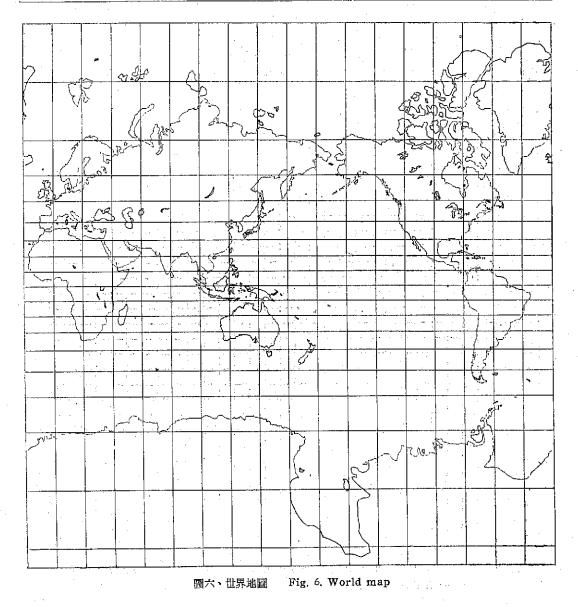
SUBROUTINE MERCAT(XLAT, XLON, X, Y, OLAT, OLON, AM)	
MERCATOR PROJECTION CUTTING THE SPHERE AT 22. 5N & 22.	S
THE SCALE AT STANDARD PARALLEL 1:AM	
TRANSFORM (XLAT,XLON) DEGREE TO (X, Y) INCH	
ORIGINAL POINT (OLAT, OLON)	
RADIUS OF EARTH 6371. 22KM, 1KM=39370 INCH	an a
PIR = 3.141593/180 = 1.745329E - 2	
R=6371, 22*COS(22.5*PIR)=5886 2398	
X=R*(XLON-OLON)*PIR*39370./AM	
X=4044648./AM*(XLON-OLON)	
YO=ALOG (TAN(3,141593/4.+OLAT*PIR/2.))	
YO=ALOG(TAN(0.7853982+OLAT*8.726646E-3))	
Y=R*(ALOG(TAN(0.7853982+XLAT*8.726646E-3))-YO)*39370./AM	
Y=2.317413E8/AM*(ALOG(TAN(0.7853982+XLAT*8.726646E-3))-Y()
RETURN	
END THE REAL PROPERTY OF A REAL	
	$\begin{array}{l} \mbox{MERCATOR PROJECTION CUTTING THE SPHERE AT 22.5N \& 22.8 \\ \mbox{THE SCALE AT STANDARD PARALLEL 1: AM } \\ \mbox{TRANSFORM (XLAT,XLON) DEGREE TO (X, Y) INCH } \\ \mbox{ORIGINAL POINT (OLAT, OLON) } \\ \mbox{RADIUS OF EARTH 6371. 22KM, 1KM=39370 INCH } \\ \mbox{PIR=3,141593/180.=1.745329E-2 } \\ \mbox{R=6371. 22*COS(22.5*PIR)=5886 2398 } \\ \mbox{X=R*(XLON-OLON)*PIR*39370./AM } \\ \mbox{X=4044648./AM*(XLON-OLON) } \\ \mbox{YO=ALOG (TAN(3,141593/4.+OLAT*PIR/2.)) } \\ \mbox{YO=ALOG(TAN(0.7853982+OLAT*8.726646E-3)) - YO)*39370./AM } \\ \mbox{Y=2,317413E8/AM*(ALOG(TAN(0.7853982+XLAT*8.726646E-3)) - YO } \\ \mbox{RETURN } \end{array}$

- 以赤道為起點沿經線至該點的投影距離為:

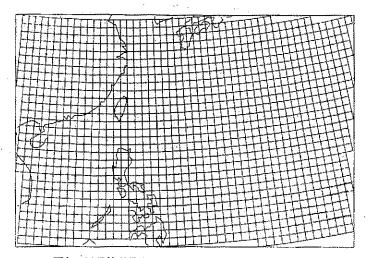
 $Y' = R \log (\tan (\pi/4 + \phi/2))$

若取 ϕ =OLAT 卽可第出赤道至原點的距離 YO,該點相對於原點之垂直座標即為:

 $\mathbf{Y}=\mathbf{Y}'-\mathbf{Y}\mathbf{O}$

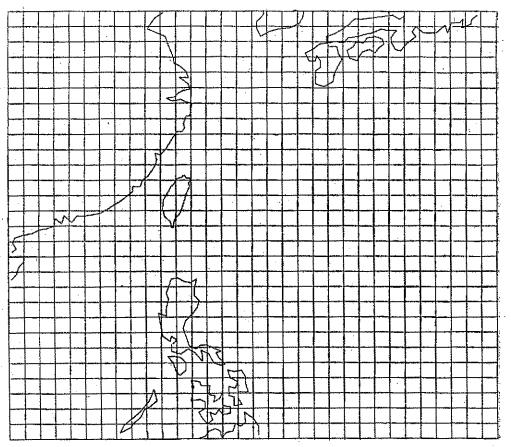

五、配合不同需求的應用實例

上述全球海陸分佈數據係沿着地形線依序各點 位置之經緯度值,原引自日本氣象廳,其中臺灣地 區係由筆者予以修訂。若利用前節所述之轉換副程 式,換算成不同型式投影圖上之位置,依次聯接成 地形線,同時以類似方法,加上經緯線之繪製,即 可精確的完成所需要的氣象地圖。只要轉換副程式 更改,投影圖就隨着改變,又因繪圖指令能控制圖 形的大小,故藉程式之安排,可將經緯線及海陸分 布地形線以任何一種投影型式或任何一種尺寸,連 **同氣象資料一併輸出,對於氣象界各種研究報告所** 需圖表的配合極爲便利。例如將藍伯特正角圓錐投 影的投影面割於 30°N 及 15°N, 並取適當範圍 如圖七,此種面積變形非常小的投影圖頗適合西太 平洋颱風路徑追踪之用。再如圖八則不屬於前述任 何一種投影,乃以緯度度數為縱座標,經度度數為 橫座標,經換算副程式(表四)製作精確的部份氣象 地圖,因爲換算簡易迅速,適宜於數值模式預報或 氣象衞星資料的臨時校驗誤差用途。其他靈活運用 之例子,不在此一一列舉。


- 35 --

表四 以經緯度數為座標之轉換副程式 Table 4. Transformative subroutine for longitude and latitude becoming the horizontal and vertical coordinates

SUBROUTINE EQUALD (XLAT, XLON, X, Y, XM, YM) C. TRANSFORM (XLAT, XLON) DEGREE TO (Y, Y) INCH C. 1 DEGREE LATITUDE EQUAL TO XM INCH ON THE MAP C. 1 DEGREE LONGITUDE EQUAL TO YM INCN ON THE MAP X = (XLON - 120.)*YM Y = (XLAT - 30.)*XMRETURN END



--- 36 ----

圖七、適用於臺灣地區顯示颱風路徑用的西太平洋地圖

Fig. 7. Western Pacific map suitable for typhoon position indication in Taiwan area

圖八、以經緯度數爲座標轉換之圖例

Fig. 8. An example on which longitude and latitude are used as the horizontal and vertical coordinates.

- 37 -

六、結 🏦

氣象地圖是天氣分析上最常用的工具,一張製作精確的氣象地圖,能增加天氣研判準確度的效果。目前常見之氣象地圖,或許是翻印的緣故,有時誤差甚爲顯著。尤其在預報作業採用電腦以後,以繪圖機填繪氣象資料時,常因底圖不精確造成困擾。本文旨在考慮藉助電子計算機及繪圖機,使所 繪製之氣象地圖誤差減至最小。利用中央氣象局 GA SPC 16/45 小型電腦及 Calcomp 921/960 繪圖機繪製之東亞氣象地圖及北半球氣象地圖等, 皆以東經120 度垂直於地圖的水平座標,且將此經 線置於全圖的中央,使臺灣居於全圖的中心部位, 期能適合於臺灣地區天氣研判之應用。

謝

本文承本局應用氣象組郭組長文鑅提供寶貴意 見,在此深表感謝。

藃

七、參考資料

 Saucier, W. J., 1955: Principles of Meteorological Analysis, University of Chicago press, p 29-35.

氟象學報徵稿簡則

一、本刊以促進氣象學術之研究為目的,凡有關氣象理論之分析,應用問題之探討,不論創作或
 譯述均所歡迎。

二、本刊文字務求簡明,文體以白話或淺近文言為主體,每篇以五千字為佳,如長篇巨著內容特 佳者亦所歡迎。

三、稿件請註明作者眞實姓名、住址及服務機關,但發表時得用筆名。

四、譯稿請附原文,如確有困難亦請註明作者姓名暨原文出版年月及地點。

五、稿中引用文献請註明作者姓名、書名、頁數及出版年月。

六、惠稿請用稿紙繕寫清楚,並加標點。如屬創作論著稿,請附撰英文或法、德、西文摘要。

七、本刊對來稿有關改權,如作者不願刪改時請聲明。

八、惠稿如有附圖務請用墨筆描繪,以便製版。

九、來稿無論刊登與否概不退還,如須退還者請預先聲明,並附足額退稿郵資。

十、來稿一經刋登、當致薄酬,並贈送本刋及抽印本各若干册。

二、惠稿文責自負、詳細規定請據本學報補充稿約辦理。

二、惠稿請寄臺北市公園路六十四號中央氣象局氣象學報祉收。

(請參閱補充稿約)

保密防諜· 人人有責· 匪諜自首· 既往不究·

-------- 氣 象 學 報 補 充 稿 約 -------

一、來稿須用稿紙(以25×24之稿紙爲原則)。

- 二、來稿字數以不超過15,000字,創連同圖、痰、英 文橋要以不超過10印刷頁為原則。
- 三、圖及表之分量以不超過全文之1/3 為原則。
- 四、英文摘要之字數以不超 1,000 字為原則。
- 五、關於表格之注意點:
 - (一) 表格須另用白紙繕製。
 - (二) 表格上方須有標題,並加表1表2等冠號。
 - (三) 表格中之項目,內容應儘量簡化。表中不重 要之項目或可用文字說明者應儘量避免列入 表中。
 - (4) 能以文字說明之小表,請採用文字說明。
 - (6) 原始記錄應加分析簡化後始可列入表中。
 - (內 統計分析表中顯著處,以*號(顯著)及 **號(極顯著)表之。
 - (出) 表幅應考慮這合本刊版幅為準。(寬度勿超 過13.5 cm)。
 - (7) 表之標題應能表示內容。
- 六、關於挿圖之规定:
 - (+) 揮圖應另 貼於大 張白紙上 , 註明作者及文
 題。
 - (二) 插圖下方須有標題,並加圖1圖2等冠號。
 - (三) 統計圖、模式圖及分佈圖一律採用120-150
 磅道林紙,以黑墨水繪製清楚。
 - (如)統計圖原圖幅面應在12-15 cm,以便縮 版。
 - (云) 模式圖原圖幅面應在15—20cm,以便縮版。
 - ⋈ 分佈圖原圖幅面應在30 cm 左右 ,以便縮 版。
 - (b) 繪製繳條粗細應能供縮小至 1/8 之程度,但 不能超過縮小 1/2 之程度。
 - (7) 數字應正寫清楚,字之大小粗細應一律,至
 少能供縮至 1/8 之程度。
 - (1) 已列表中之內容,勿再重複以挿圖表示。
 - (H) 圖之標題應能表示內容。
- 七、關於照片之規定:
 - (一) 照片紙一律採用黑白片光面紙。

- (二) 照片幅面應在12-15 cm,以便縮版。
- (三) 照片應充分沖洗清楚,須考慮縮少至1/2時 尚能清楚之程度。
- 网 照十如有特别指明點應加圖或箭頭表明。
- 八、文稿過長,或圖表過多過大時,投稿人得自行負擔印刷資。
- 九、關於參考文献之規定:
 - (-) 参考文献以經本人確曾查閱者爲限,如係來 自轉載之其他壽刋時,須加註明。
 - (二) 作者姓名以後為發行年份,加以括號,然後 為雜誌或書名、卷期數及頁數。(頁數必須 註明)。
 - (三) 文字敍述中述及參考文献時,根據文獻之號
 數,用斜體阿刺伯字,加以括號,如(1)(2)
 (3) 等揮入文句中。
- 十、文字敍述之號次以下列爲序。
 - 中文用:--、(-)1. (1) i. (i)

英文用:I.1.A.a.

- 十一、每頁下端之脚註以小號1,2,3,等阿拉伯字表 之,註明於該段文字之右上角。
- 十三、單位須用公制。單位記號例如以m(公尺)、 cm(公分)、mm(公厘)、m³(平方公尺)、m³ (立方公尺、cc(立方公分)、1(立升)、g(公分)、kg(公斤)、mg(公厘)、°C(攝氏度)、% (百分之一)、ppm(百萬分之一份)等表之,可 不必另用中文。
- 十四、英文題目中重要之字第一字母大寫,介題詞、 連接詞及不重要字用小寫。圖表之英文標系及各 欄英文細目,除第一字之第一字母大寫外,其餘 第一字母均小寫。參考文献中作者姓名每字全部 字母均大寫,論文名第一字母大寫。其餘均小寫 ,縱誌名或書名每字第一字母均大寫。
- 十五、作者英文名以用金名為原則 , 名在前, 姓在 後。
- 十六、其他未盡善事項得隨時修正之。

Volume 27, Number 1

METEOROLOGICAL BULLETIN

(Quarterly)

◆ᡔᠵᠵᡬ**۞۞**ᠹᠵᠵᠵ᠅

CONTENTS

Tsunamis and Their Damage	Ming-Tung Hsu (1)
Division of Agriculture-climate Zone in Taiwan	
Атеа	Wen-Shuo Kuo (16)
Alta	Chea-Yuan Young
Application of Computer to the Meteorological	

CENTRAL WEATHER BUREAU

64 Park Road, Taipei Taiwan, Republic of China

报 上ろ 家 氯 季 刑 第二十七卷 第二期 次 陳正改(1) 廖志翔(1) 臺灣地區空梅之環流特徵… 邱永和 曾文柄 (15) 徐君明 李南文 臺灣不同地區降雨持續性與農業機械設備使用效率之相關研究 報 告 任立渝 華文逵 (27) 1980年諾瑞斯颱風之分析報告……

	氯	家 學 報	č Ç
		季利	ł
	第二十二	七卷 第二期	{
圭	編者	中央氣象局氣象學報社	© {
地	址	臺北市公園路六十四號	战
發	行人	電話:三七一三一八一(十線) 吳 宗 堯	請
社	長	吳 宗 堯 電話:三一一〇八四〇	請交換
ĘŊ	刷者	文英印書公司	. O
地	址	臺北市三水街七號	
		電話:三〇六四七二四 三〇六七八二五	
ф Б	善民 國	七十年六月出版	I

臺灣地區空梅之環流特徵

1

The Circulation Features for "Dry" Mei-Yu in Taiwan Area

陳正改 廖志翔

Joe, C. K. Chen Chih-Shiang Liaw

摘要

本文首先對近四十年 (1941~1980) 來臺灣地區梅雨期之降水特性作詳盡之分析, 再選取 1954、1961、1963、1971 及 1980 年之空梅作個案研究。

應用合成圖法進行上述研究與分析,其結果顯示,當臺灣地區空梅年時,北半球之天氣型式 及其環流具有下列諸特徵:

(1)西太平洋副熱帶高壓脊線比平均位置偏北 10-15 個緯度。

(2)亞洲地區之氣壓系統的主軸呈東西向排列,梅雨鋒面系統偏北且不顯著。

(3)中緯度地區盛行緯流風環流。

(4)西太平洋地區之颱風次數較平均為高。

(5)西藏高原上的暖脊東移,切斷梅雨鋒面系統的冷氣來源。

ABSTRACT

In this study, we first analyzed the precipitation characteristics in Mei-Yu Season, during the years from 1941 to 1980, and then selected 5 cases of "Dry" Mei-Yu in 1954 1961 1963 1971 and 1980 respectively for case studies.

By means of composite charts, it shows that the weather patterns and the associated circulation situation in Northern Hemisphere during the "Dry" Mei-Yu years are of the following features:

(1) The ridge axis of the Subtropical High over the western Pacific displaced well north of its normal positin by 10-15 degree of latitudes.

(2) The axes of pressure systems in Asia presented west-east arientation and the Mei-Yu frontal system lay to the north of its normal position with slight intensity.

(3) The zonal flow circulation previaled in the middle latitudes.¹

(4) The occurrence of typhoon in the western Pacific became more frequent than normal.

(5) The warm ridge of Tibetan Plateau moved eastward, cutting off the supply of cold air to the Mei-Yu frontal system.

一、前 营业

在每年春夏之交的五月中至六月中的一個月, 臺灣地區經常出現陰沈天氣,並有間歇性或持續性 的降水,此即為臺灣地區之梅雨期; 梅雨期雖祇有 一個月而已,但各地之降雨量竟占其年雨量的 去 右。在梅雨顯著年時,漫長之雨期對農作物之生長 、收割、電力供應、交通運輸、工程建設等之影響 甚大,且梅雨期內之豪雨常導致洪氾;然而在梅雨 不顯著年時,即空梅或乾梅,由於雨期短,雨量少 ,以致於可能造成乾旱而影響灌溉、發電及自來用 水等,故梅雨雖為臺灣地區主要的降水來源,但亦 為臺灣四大災變天氣之一。

根據綜觀分析臺灣地區梅雨期異常降水(旱勞)時之天氣系統的平均結構和環流特徵,彼此之差 異及其與降水之關係。本文係對臺灣地區梅雨期出 現空梅(旱)時之環流特徵及相關之問題作初步之 分析,至於顯著梅雨(勞)之探討,容後另文提出。

二、資料來源及研究方法:

(-)引用資料:

本文之主要內容為對臺灣地區梅雨期出現空梅 時之地面和高空天氣系統的平均結構和環流特徵作 綜觀之分析,並探討其與降水之關係,為使分析的 結果能具有代表性,以提供預報上之應用,本研究 乃選取近四十年(1941~1980)的資料加以分析。 所採用的資料計有中央氣象局所保存五、六月每日 之地面和高空(包括850、700、500、300及200毫 巴)天氣圖,和臺北、新竹、臺南、高雄測站之日 雨量紀錄,以及日本氣象廳所出版之「季節預報」 上所登載的北半球經緯度網格點上之地面及500毫 巴逐年逐月的氣壓值,高度值及距平值資料。

(二)研究方法:

本研究所採用之方法

1.依據陳、蔡(1980)對梅雨之定義⁽⁹⁾,統計 、分析近 40 年影響臺灣地區之梅雨鋒面系統,並 確定臺灣地區之梅雨期及梅雨量,而後依據雨量之 多寡劃分為極高(MA, much above)、偏高 (A, above)、正常(N, normal)、偏低(B, below)、極低(MB, much below)五個等級 ;由此選取異常降水(MA及MB, 即旱涝)之 研究個案。本文將着重於極低(MB)的空梅個案 之分析。

2.應用合成法 (composite method), 求 空梅時之異常降水個案之北半球地面和 500 毫巴的 平均合成圖及距平圖,透過個案之平均去掉相異之 處,以獲得相同之特徵,然後由綜觀天氣學之觀點 ,應用地面及 500 毫巴之合成平均圖分析梅雨期內 出現空梅時之天氣系統之平均結構和環流特徵。並 對距平圖作進一步之分析,以瞭解空梅時主要系統 之分佈位置及與正常情況之差異,以便對空梅時天 氣系統之特性有進一層之了解。

3.綜觀分析中緯度地區緯流風速(①)之時間 系列的經向變化和西藏高原暖脊之動向,並探討其 與臺灣地區出現空梅之因果關係。

三、分析過程:

一臺灣之梅雨期:

由於分析之着眼點不同,以致國內專家對臺灣 之氣候梅雨期的看法未盡相同,但大致上從五月中 旬到六月中旬是氣候上雨量較多的期間,一般定為 梅雨期。事實上,由於大氣環流逐年不同以致每年 之梅雨期亦有很大的差異⁽¹⁾⁽⁶⁾⁽³⁾。為便於分析,我 們必須先確定近40年來臺灣地區各年之梅雨期,表 一及表二即為近四十年來(1941~1980)臺灣北部 及南部地區梅雨期之特性。至於北部地區入梅 出梅日期之訂定標準,本文採用陳、蔡(1980) 之定義⁽⁹⁾,而南部地區入、出梅日期之決定,則是 以影響北部地區之梅雨鋒面系統南移,造成南部下 雨或停止之時間為依據。

由表一知, 在近四十年內, 北部地區入梅最早 的是1980年的4月20日(本年之情形甚為特殊, 因自此日起, 環流特徵及天氣現象均已滿足入梅之 標準, 此點將於後詳述), 最晚的是1966年的6 月2日;出梅最早的是1980年的5月12日, 最晚 的是1965年的6月30日;絕對梅雨期(入梅到出 梅前一天的絕對日期)最長為54天(1964年), 最短為7天(1954年), 平均每年為34天, 即5 月16日到6月18日(出梅的前一天), 與由氣候 觀點所求得的5月18日到6月19日共33天⁽³⁾⁽⁴⁾十 分援近。在此四十年的梅雨期間, 最長的雨日為41 天(1970年), 最短的為6天(1954年), 平均 每年有24天的雨日。

由表二知,在近四十年內,臺灣南部地區人梅 最早的是1980年的4月21日,最晚的是1962年 的6月4日;出梅最早的是1980年的5月10日, 最晚的是1965年的6月30日;絕對梅雨期最長為 55天(1964年),最短為6天(1971年),平均 每年為32天,即5月17日到6月17日,亦即其 入梅日期比北部晚一天,而出梅日期則提早一天。 在此四十年的梅雨期間,最長的雨日為36天(1947 年),最短為6天(1971年),平均每年有20天 的雨日。

- 3 -

表一 臺灣北部地區梅雨期之特性 (1941-1980)

Table 1: Characteristics of Mei-Yu Period in the North Taiwan Region (1941~1980)

÷

年 代	入梅	出梅	梅雨期	ត្ត ខ	1 不下雨 日 数	梅雨	雨 量 (mm)	┃順□□位	等《
1941	5:24	6:20	27	20	7	3	641.7	9	2
42	5:11	6:28	48	28	20	4	559.3	13	2
43	5:28	6:26	29	21	8	3	335 2	27	4
44	4:30	6:20	51	38	19	7	985.4	2	· .1
45	5:19	6:16	. 28	19	9	3	386.5	22	3
46	5:13	6:11	29	21	. 8 :	4	362,3	24	. 3
47	5:16	6:26	41	35	6	6	1053 4	. 1	1
4 8	5:26	6:25	30	16	14	4	306.2	32	4
49	5:11	6:19	39	21	. 18	4	537.6	.14 .	2
50	5:17	6:25	39	30	. 9	5	526.4	15	. 2
1951	5:14	6:19	36	22	14	4	517.9	16	3
52	5:20	6:27	3 8	. 27	11	5	352.3	29	4
53	5:11	6:15	35	28	7.	4	565.9	12	2
54	5:30	6:6	7	6	1	1	63.5	39	5
55	5:8	6:15	38	25	13	. 4	312,5	31	4
56	5:9	6;18	40	23	17	4	337.8	25	3
57	5:12	6:21	40	29	11	6	574.6		2
58	5:22	6:26	35	21	14	. 3	283.0	35	4
59	5:27	6:26	30	19	11	5	392 0	21	3
60	5:15	6:19	. 35	24	11	4	591.9	10	2
1961	5:29	6:12	14	11	3	1	37,6	40	5
62	5.5	6:19	45	25	20	4	305.6	33	5 4
63	5:31	6:17	17	10	7	2	202.7	37 37	4 5
64	5:4	6:27	54	31	23	7	327.6	57 28	
65	5:10	6:30	51	. 35	16	8	876.1		4
66	6:2	6:24	22	18		3	706.2	23	3
67	5:21	6:15	25	20	4 5	5 4	314.9	4	1
68	5:18	6:28	41	32	9	т 5		30	4
69	5:16	6:24	39	28	11	3	722.5	3	1
70	5.7	6:28	52	41	11	3 7	3458.6 509.4	19 10	3
1971	6:1	6:12	11					18.	3
72	5:9	6:19	41	10	1	1	116.4	38	5
73	5:9	6.17	39	29 30	12	6	514.7	17	3
74	5:24	6:26	33	24	9	5	428.1	20	3
75	5:16	6:20	35 35	24 32		4 5	683.9	5	1
76	5:26	6:15	35 20		3		656.3	7	2
77	5:15	6:22		16	4	3	334.1	26	4
78	5.18		38 94	29	10	6	653.0	8	2
79	5:18	6:11	24	18	6	4	284.2	34	4
80		6:18	34	24	10	6	669.6	6	2
	4:20	5:12	22	20	2	4	270.3	36	5
5 均	5:16	6:19	34	. 24	10	4.5	455.8		

- 4 -

表二 臺灣南部地區梅雨期之特性 (1941-1980)

Table 2: Characteristics of Mei-Yu Period in the South Taiwan Region (1941~1980)

年 代	入、梅	出梅	梅雨期	雨	Ē	不日	下雨	梅個	兩案	雨 量 (mm)	順位	等	휪
1941	5:24	6:20	27		20		7		3	618.4	13		2
42	5.12	6:26	45 -		21		24		4	327,7	29		4
43	5:28	6:26	29	•	19		10	•.	3	7091	9.		2
44	4:30	6:18	50		30		20		7	735.6	8		2
45	5:21	6:14	24		16	•	8	. 	3	.360,8	26		4
46	5:13	6:11	29		ż 0		9		4	332.4	27		4
47	5:18	6:26	39		36		3		6	903,3	4	ļ	1
48	5:28	6:26	29		19		10		4	267.1	33		4
49	5:12	6:19	38	,	25	•	13		4	672.6	10		ş
50	-5:17	6:24	38		28		10	ļ.	5	478.7	19		
1951	5:13	6:19	. 37		26		11	1	4	962,0	3		1
52	5:20	6:27	58		26		12	•	5	555.3	14		2
53	5:12	6:15	34		20		14		4	790.7	6		2
54	5;30	6:6	7		7		0		ï	139,8	37		Ľ
55	5:9	6:18	40		18		22		4	551.7	15		5
56	5:11	6:16	36	ļ.	14		22		4	328.5	28		Ą
57	5:13	6:20	38		27		11		6	1043.2	2		
58	5:23	6:27	35	- -	19		16		3	271.2	31	1	
59	5:27	6:25	29		19		10		4	281.8	30		
60	5:19	6:18	30		18	2	12		4	381,5	25		
1961	5:29	6:13	15	<u> </u>	9	í	6	İ.	1	79.5	39	<u>.</u>	
62	6:4	6:18	14	1	13		1	[.	2	235.7	34		
63	6:1	6:17	16	·	6		10	1	2	157.8	36		
64	5:5	6:29	55		27		28		7	390.8	23		
65	5:10	6:30	55		22		29	ľ	8	481.0	18		
66	6:2	6:15	13		12		1		2	472.8	20		
67	5:21	6:15	25	ĺ	17		8		4	744.1	7		
		6:29	41		33		8		5	621.1	12		
68 60	5:19	1	35		28		7		3	551.3	14		
69 70	5:19	6:23 6:24	46		18		28		. 3	383.2	24		
70	5:9	1		{	6	<u> </u>	0	[132.0	38	1	
1971	6:3	6:9	6	l.			18		т 6	862.8	5		
72	5:9	6:19	41		28 00		15 19		5	391.9	22		
78	. 5:9	6:17	39	1	20		19 6		1.1				
74	5:27	6:25	29	.	23 00				4 5	627.6	11		
75 ;	5:19	6:21	33	1.	23	. .	. 10	ľ	9 - 3	531.5	17 32		
76	5:26	6:14	19		11		8 19			268,8			
77	5:15		. 38		26		12		6	1344.5	1		
78	5:18	6:8	21		13	. .	8	l.	· 4	183.2	35	ľ	
79	5:15	6:17			20		13		5	420.7	21		
80	4:21	5:10	20	<u>}</u>	. 8	<u> </u>	12	<u> </u>	4	47.7	40	<u> </u>	
£	匀 5:17	6:18	32		20		12		4	494.0			

--- 5 ----

[二臺灣梅雨期之降水特性:

由於臺北與新竹之降水特性相近,且兩地均在 臺灣北部地區,相距僅數十公里左右,為了增加降 水資料之個數及分析之代表性,故將臺北和新竹合 併代表北部地區,且以臺北、新竹降水量之算術平 均作為北部地區的降兩量;臺南與高雄之情形亦相 似,合倂代表南部地區⁽¹¹⁾,以便於分析。

根據近40年之資料分析,在每年的梅雨期內 平均約有4~5個梅雨鋒面系統影響臺灣地區,此 與陳、蔡(1980)⁽⁹⁾分析1968~1977年的鋒面系 統所得的數字一致。由於受到梅雨鋒面系統之影響 ,北部地區於梅雨期內之平均降雨量為456公厘, 約占北部地區年總雨量(1974公厘)的23%(1 弱),南部地區之平均降雨量494為公厘,占南部 地區年總雨量(1757公厘)的28%(1子强)。事 實上,在梅雨期間,有時會有二個梅雨鋒面系統先 後連續影響臺灣地區,以致使臺灣地區連續陰雨的 天數相對增長,北部平均為5天,最長曾達22天 (1947年5月23日~6月13日),南部平均亦為5 天,最長為14天(1977年5月26日~6月8日); 而連續不下雨的天數,北部平均為3天,最長為8 天(1951年5月20日~5月27日),南部平均為4 天,最長為13天(1970年5月27日~6月8日)。 至於梅雨期間之日降水强度,北部平均為13.4公厘 ,最大為131.2公厘(1974年6月23日),而南部 平均為15.3公厘,最大曾達325.7公厘(1977年6 月7日)。表三即為臺灣地區梅雨鋒面系統之降水 特性。

由上述之分析,可發現臺灣地區每一年梅雨期 之降水特性有很大之差異,由此可見「梅雨」在臺 灣地區是甚為不穩定之天氣現象⁽³⁾。

表三 臺灣地區梅雨鋒面系統之降水特性一覽表 (1941~1980) Table 3: The Precipitation Characteristics of Mei-Yu Frontal Systems in Taiwan Area (1941~1980)

降水特性	L E	北區	南部
Л	梅{最早 最晚	1980 年 4 月 20 日 1966 年 6 月 2 日	1980年4月21日 1962年6月4日
出	梅 { 最晚	1980 年 5 月 12 日 1965 年 6 月 30 日	1980年5月10日 1965年6月30日
梅 雨	最長 期 最短	54 天(1964 年) 7 天(1954 年)	55天(1964年) 6天(1971年)
連下雨下	▲平均 續{最長 數 4 数 4 平均	34 天 (5月 16 日~6月 18 日) 22 天 (1947 年5月 28 日~6月 13 日)	32 天(5月17日~6月17日) 14 天(1977年5月26日~6月8日)
	· 乘 (平均 續 { 最長 日數 (平均	5天 8天(1951年5月20日~5月27日) 3天	5天 13天(1970年5月27日~6月8日) 4天
日降水	显大	181.2 公座 (1974 年 6 月 23 日) 18.4 公庫	284.4 公厘(1977 年 6 月 7 日) 15.3 公厘

闫臺灣地區之空梅年:

為了易於分析比較起見,將 40 年來逐年梅雨 期之降水量依北部及南部地區分別劃分為5 個等級 ,其標準如表四所示,即極高(滂)及極低(旱) 各占總次(年)數的者,而正常、偏高、偏低各占 總次(年)數的者,而 1941~1980 年北部及南部 地區逐年梅雨期內降水量之等級如表一及表二所示 。仔細分析表一及表二,發現 1954、1961、1963 ~1971 及 1980 等五年北部及南部地區之降水量同

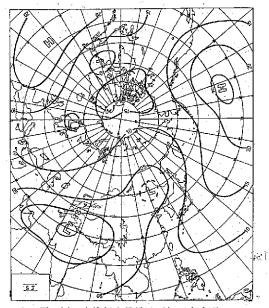
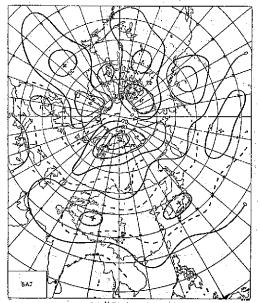
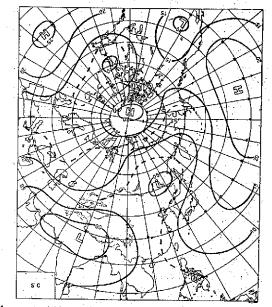

表四 降水量之劃分標準

Table 4: Ranking of Precipitation Amounts

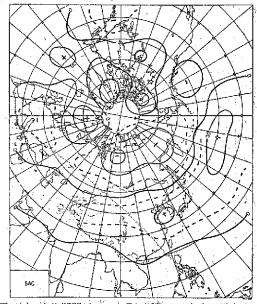

等	級	1	2	8	4	5
類	型	極 高 MA	偏 高 A	正常 N	偏 低 B	極低 MB
等	分	븅	1 <u>4</u>	÷	$\frac{1}{4}$	-1 8
次(年	シ數	5	10	10	10	5
順	位	1~5	6~15	16~25	26~35	36~40

流具有下列特徵:

1.臺灣地區均為副熱帶高氣壓系統所據盤,但 若逐日的仔細分析其天氣圖,則可發現此副熱帶高 氣壓系統並非同屬一源地,而是分屬西太平洋副熱 帶高壓及來自西藏高原的副熱帶高壓。如 1954 年 5月,1961年5月,1963年6月和1980年5月乃



圖二(A): 空梅年六月份地面氣壓合成圖 Fig 2 (A):Surface Composite Chart for June in "Dry" Mei-Yu years



圖二(B): 空梅年六月份 500 毫巴高度距平合成圖 Fig 2 (B): 500 MB Composite Chart for June in "Dry" Mei-Yu years

為西太平洋副熱帶高壓向西伸入中國大陸而籠罩臺 灣地區,至於1961年6月、1963年5月、1971年 6月和1980年6月則由西藏高原的副熱帶高壓東移 而與西太平洋副熱帶高壓合併,終使臺灣地區完全 籠罩在此輻散氣流之下,以致於梅雨鋒面系統無法 南下或影響臺灣地區,使臺灣地區大部份均為晴朗

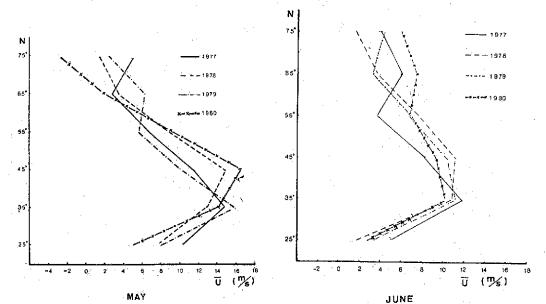
圖三(A): 空梅期間 (五一六月) 地面氣壓合成圖 Fig 3 (A):Surface composite chart for "Dry" Mei-Yu periode

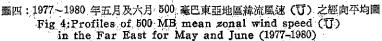
圖三(B): 空梅期間(五一六月)500 臺巴高度距平合成圖 Fig 3 (B):500 MB Composite chart for "Dry" Me社Yu periods

的好天氣,而呈現空梅的特徵。至於1954年6月 及1971年5月其500MB之環流雖與上述時間之 環流特徵有所差異,即太平洋副熱帶高壓之强度減 弱並東退,東亞地區為負距平區,但詳細分析其逐 日天氣圖,發現此時鋒面帶亦均在長江流域以北之 地區,並未南下,此與該月西太平洋地區颱風之類 現有密切之關係,以致臺灣地區於梅雨期內受梅雨 鋒面之影響亦甚少,故梅雨之天氣現象不顯著,而 呈空梅之特徵。

2.西太平洋副熱帶高壓之脊線北移到 35°N 附 近,並與由西藏高原東移之副熱帶高壓合併,使得 東亞之中緯度地區均在正距平區,亦即均受熱帶海 洋氣團之控制,此即為 1980 年臺灣、長江流域及 日本地區梅雨不顯著的主要原因。

3.本應為阻塞高壓活動區域的鄂霍次克海及烏 拉山附近此時反而為低壓槽所占據(見圖三),另 一低壓槽位於格陵蘭附近;此時鄂霍次克海阻塞高 壓東偏且北移位於白令海、北極海、及北美的阿拉 斯加一帶,而西伯利亞高壓則西偏位於北歐之波羅 的海一帶。


4.由於受到上述氣壓系統配置之影響,於是極 地冷渦 (Polar Cold Vortex)分成兩股移行, 一股流到西半球的格陵蘭、冰島一帶,另一股則流 到東半球的西伯利亞一帶;但此股來自北極的冷空 氣由於受到比梅雨季節之正常位置還偏北的副熱帶 高壓之阻擋;於是本應位於琉球海面至臺灣附近的 輻合帶反而北偏而出現在長江流域以北的地區,而 使此地區造成連續的陰雨天氣;但在35°N以南的 長江流域、日本及臺灣一帶,由於未有冷空氣之存 在而完全受副熱帶高氣壓之影響,於是天氣相當穩 定。


由上述之分析,綜觀空梅期間 500 毫巴高度距 平合成圖(圖三 B),可發現東半球區域,正負距 平成東西走向,與梅雨期之標準型態——正負距平 應成東北到西南走向——有很大差異,但與陳、蔡

(1979)⁽³⁾ 的少雨型之 B 及 C 類相似,此即表示 空梅期間,氣壓系統之主輻呈緯向排列,顯示鋒 面系統不太强烈,並受到比正常位置還北偏且强盛 之副熱帶高氣壓系統之阻擋,而不易南下影響到 35°N 以南之區域,導致此地區出現空梅之天氣現 象。

(三)中緯度 (40~50°N) 盛行緯 流 風 (zonal flow) 環流:

中緯度的氣流型,於此五年(1954、1961、 1963、1971及1980年)內的梅雨期間甚為類以, 尤其在高度距平的等值線分佈上則非常相似(陳、 蔡,1981)。假如我們先着眼於東亞及其鄰近的海 洋上,則發現此五年梅雨期之500MB面上的距平 特徵為,在副熱帶(30°~40°N)範圍內出現正距 平區域,這表示副熱帶高壓的活動比麼年更為活躍

,另在45°N以北,則出現東西向的負距平區域, 這種正負高度距平區域的分佈,表示在該期間,北 緯40~50°N範圍內,出現比往年更强烈的西風風 速。

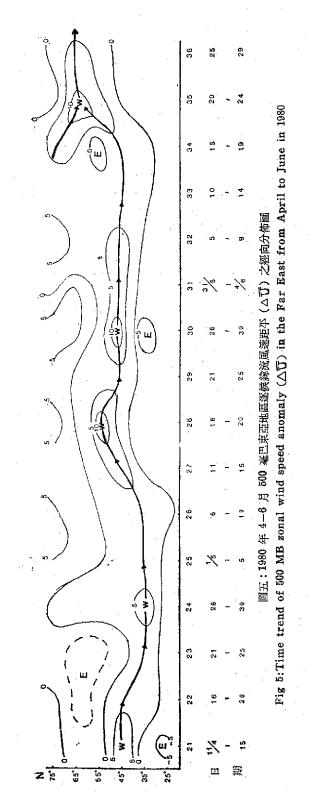
關於這點,我們選取最近四年(1977~1980年)的 500mb 東亞地區(90~170°E)五、六 月各緯度帶之緯流風(10)的平均圖(圖四)作一 比較,(1977及1979年為臺灣地區梅雨之顯著年,而1978及1980年則為不顯著年)發現:

1.1977 及 1979 年 5 月之 500mb 最强緯流風 是位於 35°N 附近,而其平均風速達 15~16m/s, 然1978 及1980 年 5 月之最强緯流風是位於 45°N 附 近,其平均風速亦在 15-16m/s,但此兩年(1978 及 1980 年)於斯時臺灣地區之雨量反而不如 1977 及 1979 年,此乃因 1978 及 1980 年五月之最强西 風帶比 1977 及 1979 年偏北 10 個緯度〔梅雨期內 主要的西風帶之正常位置應在 30~40°N〕⁽³⁾。

2.至於6月份時),1980 年之最强緯流風雖與 1977及 1979 年一樣,出現在 35°N,但其平均風 速為11m/s,比1977 年小;而1978 年緯流風之主 轴仍位於 45°N。

3. 另分析此四年五、六月份緯流風速之經向(隨緯度)變化曲線:發現 1978、1980年之 45°N 及 35°N 間的緯流風速較為接近,其差距 祗有 1-2m/s 而已,但 1977及1979年於此兩緯度帶之 風速差距則相當大,高速 4m/s。

4.由上述之分析,得知1977及1979年梅雨期 間,由於35~45°N中緯度緯流風速的顯著差距, 於是南北能量之交換相當顯著,且此時,緯流風之 主軸南移到35°N附近,於是西風帶上的氣旋式擾 動以及其所伴隨的冷空氣將較易影響到35°N以南 的副熱帶地區,而使臺灣地區出現較不穩定的陰雨 天氣;至於1978及1980年於亞洲大陸的40~50°N 上空乃盛行緯流風環流,但經向之環流較弱,與 1977及1979年之環流特徵完全不同。


(四) 1980 年臺灣地區梅雨期之特徵:

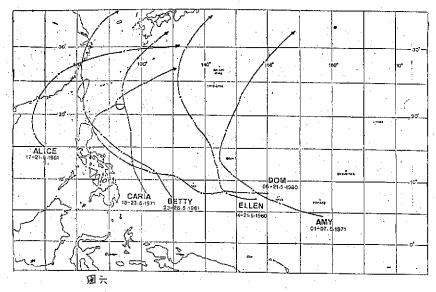
分析臺灣過去 84 年之雨量資料,發現去年(1980)各地之雨量普遍缺少,除臺北及基隆外,其 地地區均低於氣候平均值(詳見表五),此乃因造 成臺灣地區降水之主要氣象因素⁽³⁾一直不顯著——

		表五	1980	年	臺社	聲 名	・地	Ż	年	雨	Ē	及	其	嬱	率				-	
Table	5:Total	preci	oitati	on	am	ount	s a	nđ	va	ria	tio	n r	ate	0	ver	Ta	iwan	in	1980)

						· · · · · · · · · · · · · · · · · · ·						
刷 站	麼	淡	鞍	竹 子	基	彭 佳	花	宜	東 吉	澎	螷	髙
	北	水	部	湖	隆	嶼	蓮	蘭	鳥	湖	南	雄
1980 年 (R)	2161.6	1766 ,0	3593.1	3906.8	3514.9	1675.5	1723.7	2153.3	432.6	531,5	530.7	572.8
氣候平均 (R)	2093,9	2062.4	4077.9	4570.8	3144.5	1717.0	2063.2	2728.8	911.4	1021,3	1776,2	1719,6
(年代) {	1897 } 1979	1943 } 1973	1943 2 1979	1947 7 1979	1903 { 1979	1910 { 1979	1911 2 1979	1936 2 1979	1963 { 1979	1897 { 1979	1897 { 1979	1932 { 1979
百分比(R/R)	103.2	85.6	88.1	86.0	111.8	97.6	83.5	79.2	47,5	52.0	80.0	32,9
趱 率(R-R/R)	0,03	-0.14	-0.12	- 0.14	0.12	-0,03	-0.17	-0.21	-0,53	-0. 48	-0.70	-0.67
						·			ļ		ļ	
	·····											
利武	嘉	臺)呵 囲	大	 王	新	恒	新	蘭	日 月	 蜜 [梧
雨道站量	嘉	臺中	阿 里 山	大武	玉 山	新	恒春	新港	蘭嶼	日 月 潭	·····································	 梧 樓
雨 站			里 山		цц	竹	春		嶼	厚		
雨站	義	中 1013.8	里 山 2239.6	武 1142.8	īЦ	竹 1280.3	春	港 1278.3	嶼 2615,2	月 潭 1576.3	東	
雨 站 量 1980 年(R)	義 878.8	中 1013.8	里 山 2239.6	武 1142.8	山 1716.4	竹 1280.3	春 988.7	港 1278.3	嶼 2615,2	月 潭 1576.3	東 817.5	棲
雨 <u>量</u> 1980 年 (R) 氣候平均 (R)	義 878.8 1860.5 1969 ~	中 1013.8 1735.4 1897 ~ 1979	里 山 2239.6 4214.8 1934 2 1979	武 1142.8 2571.5 1940 2 1979	山 1716.4 2643.3 1944 2 1979	竹 1280.3 1727,5 1938 1979	春 988.7 2198.2 1897	港 1278.3 2348.4 1940 2 1979	嶼 2615.2 2859.3 1942 7	月 潭 1576.8 2818.0 1942 ~ 1979	東 817.5 1848.4 1901 1979	棲 663.4 1246.2 1977 ?

(1)於春夏之交的梅雨,因雨期短,雨量又少。(2)西太平洋地區之殿風未能直接影響臺灣。——以致臺灣地區自入春後均未有豐沛的雨量,於是各地水庫之蓄水量逐日下降,此情形於南部地區尤為嚴重⁽¹²⁾(見表五),打破有史以來的最低紀錄,而使農耕灌溉用水、自來飲用水、工業及發電用水均大受影響,所以去年臺灣地區之降兩特性有待進一步之分析,藉此而可瞭解空梅時之一般氣候特徵,至於臺灣去年(1980)乾旱之實際情形,詳見吳、王(1981)⁽⁴⁾之分析。

現以 1980 年 4--6 月 500 毫巴東亞地區逐候 緯流風速距平(① Anomaly)的經向分佈圖(圖 五),來說明 1980 年臺灣地區梅雨期之時間及空 梅之特徵。


由圖五可發現: 4月 20 日以前,最强之緯流 風是位於 40~45°N 之間,但4月 20 日以後,其 强風帶南移至 35~40°N 之間,並一直持續到5 月 10 日,而在5月 11 日之後,其强風帶竟北移到 45°N 附近及以北的地區。當强風帶於4月 20 日 至5月 10 日出現在 35~40°N 之間時,鋒面帶亦 徘徊於臺灣地區,並連續出現陰雨天氣;但五月中 旬至6月下旬這段本屬臺灣的氣候梅雨期,由於西 風帶之主軸一直停留在45~50°N 之間,故鋒面亦 一直停留在長江流域,甚至更北之地區,使臺灣地 區不再出現梅雨之徽象,而呈現嚴重的乾旱。

由上述之分析得知:春末時,當緯流風之主軸 滯留在 35°N 或以南地區,其風速比平均值 (12 m/s) 大 2~4 m/s 以上時,則梅雨鋒面帶將滯留 在强風軸南邊 10 個緯度距離的臺灣及華南地區, 而使該地區呈現陰雨天氣;此亦為前面所述,梅雨 期之一環流特徵,當强風軸北移,而停留在 35°N 以北的地區時,則梅雨鋒面亦即北移遠離臺灣地區, 故梅雨期間,緯流風主軸之位置及其强度變化可 作爲診斷和預報臺灣地區天氣現象之一種方法。

(五)空梅與颱風之關係:

分析空梅年五~六月之天氣形勢,可發現另一 特徵, 即於梅雨期內, 西太平洋地區出現颱風且 接近或侵襲臺灣地區之次數相當多(見圖六),如 1961年5月17—20日及5月22—28日先後有艾 麗絲(ALICE)及貝蒂(BETTY)颱風侵襲臺 灣地區, 1971年4月29日—5月8日及5月 18—23日先後有愛美(AMY)及解拉(CARLA) 颱風經過臺灣附近, 1980年5月15—26日先後有

圖六:臺灣空梅期間,西太平洋地區之颱風路徑圖

Fig 6:Typhoon tracks over west Pacific region during "Dry" Mei-Yu periods in Taiwan

五個颱風在臺灣附近通過,尤其唐姆(DOM)及 艾倫(ELLEN)颱風由臺灣東方海面北上後,即 在日本附近海面減弱成為低壓系統,太平洋副熱帶 高壓即西伸進入臺灣及華南一帶,使臺灣地區盛行 東南風系⁽⁵⁾。就大氣環流結構而言,此時梅雨鋒面 系統已不再適合存在於臺灣地區⁽²⁾。

由上述之分析,得知梅雨期內,若於西太平洋 地區出現颱風,則颱風將破壞梅雨鋒面系統⁽⁴⁾,甚 至終止梅雨,以致使臺灣地區出現空梅之特徵。

(內西藏高原之暖脊與空梅之關係:

由前述知, 空梅時之主要環流特徵為東亞地區 均受副熱帶高壓脊所籠罩, 亦即其脊線比梅雨期之 正常位置偏北約個 10—15 緯度左右, 其範圍亦向 西伸展到華中一帶。而副熱帶高壓脊線之北進及西 伸可能是受西藏高原上之嗳脊東移合併的結果, 故 西藏高原上嗳脊是否存在以及其未來之動向對梅雨 的顯著性具有相當大之決定性。至於西藏高原之曖 脅與西太平洋副熱帶高壓合倂而使副熱帶高壓脊線 北進及西伸的過程, 簡略說明如下:

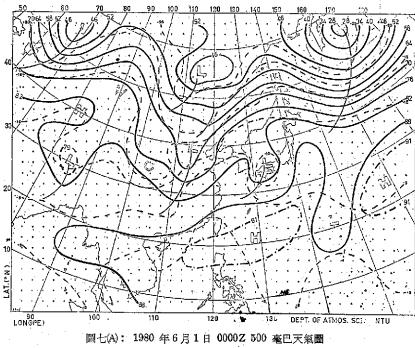
1.高原地區的冬季本為一冷源,當進入春末夏 初後,由於受到日射,於是逐漸轉變為熱源,周圍 的大氣亦逐漸增溫⁽³⁴⁾,而於西藏高原及其以北之 地區建立起一個較為穩定的暖心高壓或高壓脊;印 度南部的副熱帶高壓亦隨季節而逐漸北移與西藏高 原之暖脊合倂。

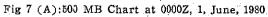
2.當來自北極的冷槽侵入西藏高原的西北或北

方時,新疆西部或其北部將有明顯的降溫,因此暖 脊的結構受到破壞,其穩定性亦不復存在而開始向 東移。

3.當高原之暖脊東移到長江中下游時,將切斷 梅雨鋒面系統的冷氣來源,於是原在華南及臺灣地 區的冷槽及風切線消失,暖脊縱續束移併入副熱帶 高壓內,終於使太平洋副熱帶高壓脊線北進而西伸 ,臺灣及華南一帶均在副熱帶高壓之控制,而呈現 空梅之天氣。

此現象,於1980年6月最爲明顯,亦爲空梅 時之一環流特徵,在6月份曾有4個鋒面系統(6 月1-5日,6-8日,9--14日及15--22日)自 華北一帶向東南移,(見圖七),但當其移到長江 中下游時,此鋒面系統就淺化而不明顯,臺灣地區 不再受其影響,此即是睃脊東移倂入太平洋副熱帶 高壓使其脊線北進西伸,於是臺灣地區竟日受此熱 帶海洋氣團籠單而呈現炎夏之天氣。


圖七即為西藏高原暖脊東移倂入副熱帶高壓過 程之一系列天氣圖。


五、結 論:

本文由綜觀天氣學之觀點,分析近四十年來臺 灣地區梅雨期之降水特性,並應用合成法,探討臺 灣地區出現空海時,北半球天氣系統之平均結構和 環流特徵,得到下列結果:

(一臺灣北部地區之平均梅雨期為5月16日至

- 12 -

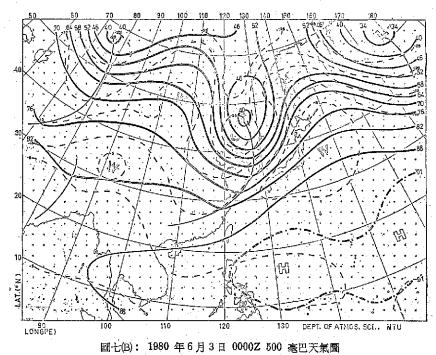


Fig 7 (B):500 MB Chart at 0000Z, 3, June. 1980

- 6 ---

屬第5級,即列「極低」(MB)之標準,且其降水 量均不足或紙有該地梅雨期平均降水量的一半,另 其梅雨期亦甚短,故我們定此五年為臺灣地區之「 空梅」年(乾梅或梅雨不顯著年),本文即選取此 五年做為「臺灣地區梅雨期空梅環流特徵」之研究 個案。

四、結 果:

(一)臺灣地區梅雨期時,亞洲天氣型式之平均結構
 及環流特徵:

臺灣梅雨期時控制亞洲天氣型式之主要系統根 據陳、蔡(1980)⁽⁹⁾之研究,具有下列特徵:

1.在高緯度地區 (50~70°N) 是阻塞高壓之活 動區域,有二個穩定的高壓或高壓脊分別位於鄂霍 次克海附近及烏拉山 (裹海附近) 至西伯利亞中部

(貝加爾湖附近)之間,各稱為鄂霍次克海阻塞高 壓及西伯利亞高壓。

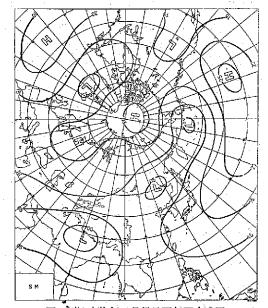
2.在此兩高壓或高壓脊之間,為一寬廣且近似 帶留的低壓槽,位於我國東北、蘇俄的濱海省及日 本海附近,俗稱東北低壓。

3.在江淮平原及華中附近有高壓系統存在,其 發展高度僅限於對流層之底部,俗稱華中高壓,其 勢力雖然不强,但對梅雨天氣扮演極重要之角色。

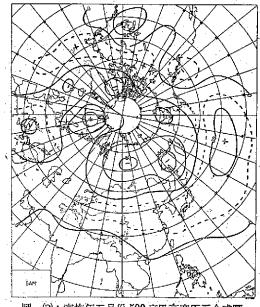
4.700及500毫巴高空圖顯示出,在60~140°E 之間的 30~40°N 是主要的强西風帶。

5.東亞主槽位於 120~125°E 之間,即由我國 東北向南南西延伸經韓國、東海至華南。

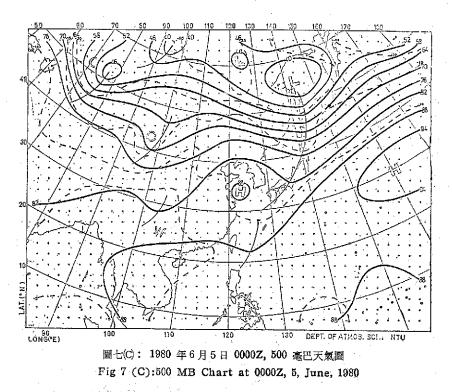
6.太平洋副熱帶高壓之脊線位於 16~18°N 之間。

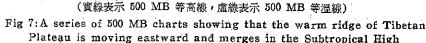

7.西藏高原南方與印度北部間為一季風低壓 (monsoon low), 其形成之時間及向東伸展之 程度,對西南季風爆發之時間及是否盛行具有決定 性的關係, 而西南季風爆發之時間及盛行之程度 與遠東地區梅雨期之降水程度則有密不可分之關 係⁽¹¹⁾。

8.由於太平洋副熱帶高壓和華中高壓為乘性廻 異且勢力相當之兩系統,而梅雨鋒面就是在此兩高 壓系統之間呈滯留或移動緩慢的系統,正好在臺灣 及其附近徘徊,終於造成梅雨期間在臺灣附近的大 量降水,大量的水汽主要是透過梅雨鋒面南方的 西南氣流所携帶,而來自孟加拉灣及中國南海一 帶⁽¹⁵⁾。


口臺灣地區空梅年時,天氣系統之平均結構及環

流特徵:


圖一~圖三為室梅年(1954、1961、1963、 1971 及1980 年)五、六月及空梅期間(五一六月)之地面氣壓和500 毫巴高度距平合成圖,另分析 此五年的天氣圖和距平圖⁽¹⁰⁾,並與梅雨期之平均 圖⁽⁹⁾作比較,可發現空梅年時之系統結構及大氣環



圖一A): 空梅年五月份地面氣壓合成圖 Fig 1 (A): Surface Composite Chart for May in "Dry" Mei-Yu years

6月 I8日,計34天,南部為5月17日至6月17 日,計32 天;影響臺灣地區之梅雨鋒面系統平均 每年有4-5個;北部地區之平均降水量為456公 厘,占其年雨量的四分之一弱,而南部為494公厘 ,占其年雨量的四分之一强;梅雨期間之雨日北部 平均有24天,南部有19天。

(二)1954、1961、1963、1971及1980年為近四 十年來臺灣地區之空梅年,因其梅雨期短,且降水 量少,同列「極低」之標準。

(三臺灣地區空梅年時,天氣系統之平均結構及 環流特徵如下:

1.西太平洋副熱帶高壓脊線,比平均位置 (15°N) 偏北 10—15°,並與由西藏高壓附近東移 之副熱帶高壓合件,使得東亞之中緯度地區均在正 距平區內,此表示臺灣、長江流域及日本南部地區 均受熱帶海洋氣團控制,以致梅雨鋒面系統未能南 下影響臺灣地區。

2.本應為阻塞高壓活動區域的鄂霍次克海及 烏拉山一帶,此時為低壓槽所占據,而鄂霍次克海 阻塞高壓反而東偏且北移位於白令海,西伯利亞高 壓則西偏位於北歐一帶。 3.東半球地區 500 毫巴高度之正負距平成東 西向,表示此時氣壓系統呈緯向排列,鋒面系統偏 北且不顯著,於是梅雨鋒面系統不易南下影響到臺 灣地區。

4.中緯度(40~50°N)地區盛行緯流風環流 ,而經向環流較弱,於是西風帶上的氣旋式擾動以 及其所伴隨的冷空氣不易影響到 30°N 以南的副熟 帶地區。

一個梅雨期間,若於西太平洋地區出現颱風,則 颱風將破壞梅雨鋒面系統,甚至終止梅雨,以致臺 灣地區將出現空梅。

(因西藏高原上若有暖脊並東移,將切斷梅雨鋒 面系統之冷氣來源,而使華南及臺灣地區的冷槽及 風切線消失。當暖脊東移倂入副熱帶高壓內,將使 太平洋副熱帶高壓北進而西伸,於是臺灣及華南一 帶受此高壓之控制而呈現空梅之徵象。

致 謝

本論文之完成,承蒙中央氣象局預報中心謝信 良主任悉心審閱,王時鼎技正、喬鳳倫技正及鄭俠 課長提供諸多寶貴意見與資料,蕭長庚科長、李南 - 14 --

文及葉天降先生協助處理資料,楊逢世先生、紀美 杏及劉淑珍小姐幫忙製圖、打卡及謄稿,特比致謝。

參 考 文 獻

- 王時鼎,1970:論臺灣之梅雨,氣象預報與分析 ,第四十四期,12-20。
- 2.曲克恭,1980:臺灣梅雨之可預測度。中國文化 大學氣象彙刊第一期,1-19。
- 3. 吳宗堯、陳正改,1977:臺灣北部地區豪雨特性 之分析,氣象預報與分析,第七十七期, 69—115.。
- 4.吳宗善、王時鼎,1981:民國 69 年臺灣乾旱研
 討,大氣科學,第八期,95-104。
- 5. 紀水上,1978、臺灣梅雨期平均環流之初步研究 ,大氣科學五卷二期,17—32。
- 6. 徐晉淮,1971:臺北地區豪雨之研究,氣象學報 十七卷三期,49-71。
- 7.陳正改,1979:梅雨期間低層噴射氣流與臺灣地 區豪雨之關係,大氣科學六卷一期,29—37
- 8.陳正改、蔡清彦,1979:臺灣地區梅雨系統之降. 水特性及天氣型式,臺灣大學大氣科學系, 研究報告 Mei-Yu-003,38pp.

- 9.陳正改、蔡清彦,1980:影響臺灣北部地區之梅 雨系統,大氣科學第七期,49-58。
- 10.陳正改、廖志翔,1981:臺灣地區空梅之大氣環 流特徵,中央氣象局「異常氣候研討會」論 文彙編,131—153。
- 11.陳泰然、紀水上,1978:臺灣梅雨鋒面之中幅度 結構,大氣科學五卷一期,35-47。
- 12.劉廣英,1980:梅雨季中極端天氣預報之研究, 空軍氣象中心研究報告 019 號, 30pp.
- 13.廖學鎰、徐明同,1978:近年來國外梅雨研究之 評介。國科會與中研院「臺灣地區災變天氣 研討會」論文彙編,1978年5月27—28日 ,108—149。
- 14.Chang Jen-Hu, 1972: Atmospheric circulation systems and climates, University of Hawaii, 328pp.
- 15.Chen, G.T.J. and C.Y. Tsay, 1977: A datailed analysis of a Case of Mei-Yu system in the vicinity of Taiwan, Tech: Rep-No. Mei-Yu-001, Dep. Atmos. Soi., Nat. Taiwan Univ., 249pp

保密防諜・ 人人有責· 匪諜自首・ 既往不究

臺灣不同地區降雨持續性與農業機械

設備使用效率之相關研究

An Investigation of the Relationship between Rainfall Persistence and Agricultural Machinery Efficiency in Various Regions of Taiwan

邱	永	和	曾	文	柄
Ch	iu, Yung	-ho	Tsen	g, Wen–	ping
徐	君	明	李	南	Ì.
Hsu	, Chun-n	ning	Lee	, Nan-u	ven

ABSTRACT

To define the influence of rainfall on machines for rice cultivation (such as power tiller or tractor, rice transplanter, rice combine and rice dryer), inquiry has been made in various regions of Taiwan.

The threshold value of daily rainfall amount which causes unfavorable condition to harvesting operation was defined as 0.1 mm. A day was counted as a rainy-day, if its daily rainfall exceeded the threshold value.

The frequency distribution of rainy-day sequence during 1950-79 of Taipei, Taichung, Tainan and Taitung was fitted by the second-order Markov chain model, respectively. The probability of persistent unfavorable day for harvesting operation was then estimated. These data are vital references for machinery allocation in various regions of Taiwan.

・、前

農業具有的特性之一是:整個生產過程當中, 實施各種田間作業——耕耘、播種、收穫等—— 時,都受到天氣影響。如果因不利的氣象因素而 未能在作業適期內完成必需的作業,不僅可能導致 減低產量的後果,也會對作物的品質形成不良的影響。

田間作業能否順利地實施,取決於當時的天氣 狀況;而其中最具決定性的氣象因素便是當時及近 期的降雨。以作業當時的降雨而言,因作業者感覺 不舒服,便將停止工作,對於降雨是否造成作物或 土壤的不適宜作業等條件,似較不重視。至於作業 以前的降雨,因增加了自由水分,常使作物或土壤 成為不適於作業的情況。 農業生產如以機械代替勞力時,仍將受到降雨 的影響。更因機械作業是資本集約的經營方式, 所以降雨與否與投資及收益息息相關。 Dalton (1974)以圖一表示其相關:

时间成为	1.可用時間	/1. 機械操作費用
田間作業	2.作物狀況 ⇔	2. 作物處理費用
	4.1F把机06(二>	3.作物處理損失
期的天氣	3.工作效率	4.有 關損失

圖一 天氣對農機使用的影響

Fig. 1. The effects of weather on the use of agricultural machinery (Dalton, 1974).

— 16 —

以機械操作費用為例,因降雨使得可用的作業時間 減少,即減少了可作業面積而使得固定成本(包括 折舊、利息等)增加。因此探討影響農機作業的降 雨條件以供農業機械投資及調配時參考,有助於合 理經營而能獲致經濟效益。

二、降雨對農業機械作業的影響

爲瞭解降雨對水稻栽培農機作業的影響,除了 要統計不利於農民(機械作業者)戶外作業的降雨 條件外,尙須考慮水稻及水田的自由水分增加後, 產生的物理性狀變化——如稻株黏滯性增加、土壤 硬度減小等——及其與機械作業能力變化的關係。 以耕耘機而言,其牽引能力為土壤含水量、土壤種 類等的函數(黃、六十二年)。

一般而言,上述的物理關係資料仍屬不足。為 了實用目的,本計畫採用問卷調查方法,歸納農民 關於降雨影響農機作業的經驗,以便決定臨界降雨 量而能進一步分析其發生機率。

計畫中曾選定臺北、臺中、臺南、臺東等氣象 測站附近的鄉鎮中,設有農機中心的鄉鎮農會,委 託該中心職員訪問擁有整地、挿秧、收穫及乾燥等 四種作業機械的農民。實施情形如表一。

		Table 1. St	atistics of us	ser inquiry o	f agricultur	al machinery	
	•	· ·	問	卷 收	间 份	數	
相關范	相關測站	調査農會	₩ 転 曳 引 機	挿 秧 機	聯 合 收 穫 機	乾燥機	備 註
-	**	樹林鎭	4	7	4	7	—
臺	ᅶ	新 莊 鎭		÷			・
		大雅鄉	6	6	6	6	禾 寄 間 卷
臺	中	大里鄉	6	6	6	6	問卷
		下營鄉	6	6	6	6	
臺	南	六 甲 鄕	8	8	8	8	
臺	東	關 山 鎭	12	12	12	12	

	表一	農機	使用者	意見	調査實為	施結學	畏

本計畫全部報告見氣象局研究報告 56 號,限 於篇幅,本文僅討論水稻聯合收穫機的例子。

水稻的收穫是最耗費人工的一項作業,每公頃 所需總人工恆在十五人以上(賴,五十九年)。如 能利用聯合收穫機,可大幅降低人力需求,是今日 農村勞力缺乏趨勢下必須採用的方法。

不過截至目前所發展出來的日本型水稻聯合收 穫機的作業能力深受降雨的不利影響,效率不佳。 聯合收穫機在田間作業時,不僅與一般農機相同, 容易因土壞硬度不夠而下陷之外;更因由國外引進 的聯合收穫機原先設計是以乾燥稻株為對象,其脫 穀機以下置式脫穀為主,係將稻束送進脫穀簡和承 網之間,廼轉以脫去稻穀。一旦稻株含有水分(即 使只是稻株上含有的少量露水),便易於因承網網 眼阻塞而中斷作業(鄔,六十二年)。調查曾經在 下雨時使用聯合收穫機作業者的意見顯示,脫穀及 選別裝置阻塞比率在 50 %以上; 而稻穗輸送部份 發生阻塞的比率亦在 30 %以上。由於脫穀時如果 阻塞,首須減慢行車速度,使得單位面積機械收割 時間比收割乾燥稻株時顯著增加,嚴重者更導致機 械故障。調查結果顯示,各地區皆有半數以上的農 民表示,導致聯合收種機未能完全利用的原因是因 天氣的不利影響。機械如不能充份利用,將積壓資 令,增加農民負擔。

為了消除現有聯合收獲機的缺點,省農試所會 試驗改善脫穀選別部分(六十年),採用上置脫穀 方式,加强處理箭作用(六十四年),或採用簡易 的濕稻處理裝置(六十六年)。其中以加裝濕稻處 理裝置較能克服下雨的不利影響。但因收獲後的稻 穀仍需再經選別處理,對於勞力已經缺乏的農村, 恐不易為農民所接受(六十八年)。最近的發展(六十九年)雖可解決脫穀简堵塞現象,却仍有選別

系統及篩網阻塞的問題。

透;如無日曬,則須經一天才能乾透(表二)。

稻株被降雨淋濕後如有日曬,須經半天才能乾

-121-1	區	三分之二以上問卷	最 多	・數問卷	BB //>
地		選擇日數	選擇日數	占問卷百分比%	問卷數
澎	-14	0.5	0.5	100	
·室	臺北	1	1	100	4
臺	中	0.5	0.5	66.7	
室	室中	1	1	83.3	12
臺	南	1	0.5	64.3	
室.	室 用	1	0.5	64.3 *	14
臺	東	0.5	0.5	66.7	
<u>æ</u>	木	1	1	50	12

表二 稻株淋濕後,如有日曬及無日曬,須經數日後,稻株才能乾透 Table 2 Required drying days after the rice cluster was wetted

而如果稻株僅是被露水潤濕,雖然露水量每晚尚無 超過 0.5 mm 者 (Chang, 1968),仍有四分之三 以上的農民將等待至露水稍乾後,才會開始聯合收 獲機的田間作業,等待時間視各地區而異,由半小 時以至三小時不等。由於農民極為重視稻株的乾濕 狀況,雖然僅有最少量的降雨,亦將減少田間作業 的時間,所以定日降雨量 $\geq 0.1 \, \text{mm}$ 時,為不適 宜聯合收穫機作業的降雨條件。

三、應用馬可夫鏈模式分析降雨持續特性

實用上,如需要推測一地的持續兩日機率(雨 日的標準可依需要定日雨量大於 0.1 mm 或 5 mm 等為雨日)時,可以應用機率理論處理。例如希望 得知雨日持續 n天的機率時,因為下雨到第 n天, 則第 n+1 天必為乾日,所以持續機率為 P^{n-1} .Q (P:雨日機率,Q=1-P:乾日機率)。

有關兩(乾)日機率,常見的算法是以資料期間的兩(乾)日日數除以資料期間的總日數。這種 無條件或絕對機率的隱涵意義是;兩(乾)日的發 生是一種獨立事件。

但是由平常的觀察即可體會到:一旦下雨,很 少馬上轉晴。以實際天氣而言,鋒面或颱風過境, 總是持續數天;初夏雷雨期開始後,更因具有持續 的特性,甚至可準確地預測第二天將下雨的時刻。 這些現象說明雨日一開始,很可能持續數日,亦即 降雨與否基本上是一種相依事件:今天有雨而以後 n天有雨的機率與今天無雨 而以後 n 天有雨 的機 率並不相同,如為獨立事件則無此差異,所以推算 雨日持續機率時,應以雨日的條件機率估算才合乎 需求。

→、雨日序列分佈的數學模式

隨機過程中的馬可夫過程 (Markov process) 所具有的馬可夫性質指: 不論有任何的過 去事件($X_0=i_0, X_1=i_1, \dots, X_{n-1}=i_{n-1}$)及現在 事件($X_n=i$),未來任意事件($X_{n+1}=j$)的條件 機率只與現在事件有關而與過去事件無關。以式示 之如下:

若干研究者已根據馬可夫鏈模式求得兩(乾) 日序列的理論分佈並與實測分佈相比較,認為該模 式可有效地描述兩(乾)日序列的分佈。

Gabriel 和 Neumann (1957) 以 Tel Aviv 的實測兩日及乾日序列分佈與由簡單隨機過 程所求得的雨日及乾日序列分佈相比較,得到良好 的近似結果。在其分佈中便使用了兩日及乾日的 條件機率,其簡單的隨機過程 即為馬可夫過程。 - 18 -

Caskey (1963) 利用馬可夫鏈模式計算 Denver 不同期間的降雨機率,發現與實際出現機率相當吻 合。Weiss (1964) 認為馬可夫鏈模式可適當地 應用於 Montsouris 的雨日序列分佈, San Francisco、Harpenden、Moncton 及 Montreal 的雨日及乾日序列分佈,並可用於 Kansas city 及 Fort Worth 的乾日序列分佈。

上述的研究中,尚有若于區域的兩日及乾日序 列分佈與由一階馬可夫鏈(first-order Markov chain) 模式所推導的序列分佈 不相符合,所以 Feyerherm 和 Bark (1965) 嘗試利用二階馬可 夫鏈 (second-order Markov chain) 模式分 析雨 (乾) 日序列。所謂二階模式指未來事件的條 件機率與其前兩次的事件有關。以式示之如下:

 $P\{X_{n+1}=j|X_0=i_0, X_1=i_1, \dots, X_{n-1}=i_{n-1}, X_n=i\}=P\{X_{n+1}=j|X_{n-1}=i_{n-1}, X_n=i\}$ ------(2) 而(1)式即代表一階或稱簡單的馬可夫鏈模式。

Peng (1967) 使用卡方 (X²) 測驗 法驗證 Weiss (1964) 的結果,指出有些雨日及乾日序列 分佈不能用一階馬可夫鏈模式分析並導出高階馬可 夫鏈模式的有關公式。Hsu 和 Sakanoue (1975) 利用與 Peng (1967) 相同的方法推算日本福岡的 雨日機率及持續特性,指出福岡地區的雨日序列分 佈合於三階馬可夫鏈模式。

一般而言,高階馬可夫鏈模式的估算需要較長 期的資料,在推算持續時間較長的雨(乾)日序列 分佈時較近似於實際分佈。Feyerherm (1967) 分析了 Columbia Mo 一階與二階的模式後, 認為一階模式所估計的持續較長的雨日及乾日序列 的結果不如二階模式所得的結果。但同時則强調, 實用上我們所考慮的持續時間較短,因此在測驗實 測分佈與理論分佈之差異時,我們將採用低的顯著 水準 (level of significance),只要較低階模 式估計所得的理論分佈與實測分佈相差不超過最小 顯著標準時,將採用較低階的模式,以減少冒犯放 棄慎擬說的危險(擬說:實測分佈與理論分佈無差 異),並可減少繁復的計算工作。

(二)、模式有關公式

彭 (Peng 1967a, 1967b, 1968) 曾導出應用 馬可夫鏈模式的有關公式。

1. 絕對機率與條件機率

以 P (W) 及 P (D) 表雨日 與 乾日的絕對

機率。 $P(\frac{W}{W})$ 及 $P(\frac{D}{W})$ 表前一日為雨日 時,當日為雨日及乾日的條件機率。 $P(\frac{W}{WD})$ 及 $P(\frac{D}{WD})表前第一日為雨日且前第二日為乾日$ 時,當日為雨日及乾日的條件機率。其它如 $<math>P(\frac{D}{DW}), P(\frac{W}{DW})等的意義可仿照瞭解。條$ 件機率依下述公式計算

式中:

n :當日以前的日數

k :雨(乾)日持續日數

m_k:k 的頻度

a :指 n 日當中全為兩日或乾日

b :指 n 日當中有兩日及乾日出現

因一年之中相同月份的大氣形勢相似,所以計 算條件機率常以一個月為統計期間(威和嚴,六十 七年)。 不過 亦有如 Gabriel 和 Neumann (1957)係將 12~1 月的期間合併,這是因為 Tel Aviv 當地的降雨在此期間的變異較小。 不論如 何取用統計期間,因為雨(乾)日序列不會剛好在 月初或月末開始或結束,所以統計時係以該序列起 始時所屬的月份為準,如進一步假設全年雨(乾) 日序列平穩,則可以一年為統計期間計算各條件機 率。

2. 理論與實測頻度分佈的統計檢定

雨(乾)日持續k日的理論機率依以下公式計 算

 $f(k) = (\prod_{n=2}^{k} P_{nb})(1 - P_{(k+1)b}) k < r \iff (5)$

$$f(k) = (\prod_{n=2}^{r} P_{n+1})(P_{r+1})^{k-r}(1-P_{r+1})$$

式中 r 代表一階或二階模式,如為一階 r = 1, 如為二階 r = 2。 以各持續日數的機率乘總觀測

- 19 -

次數即得理論頻度,再與各持續日數的實測頻度比 較求 χ²值,可比較二者分佈的差異是否顯著。

(三)、臺灣不同地區降雨持續特性

根據影響聯合收獲機作業的降雨條件,定日雨 量 ≥ 0.1 mm 時為雨日, < 0.1 mm 時為乾日。 首先估算臺北、臺中、臺南、臺東等測站全年的雨 日條件機率。然後依(5)、(6)二式計算各地區雨日 序列的理論頻度,再與實測頻度相比較,由卡方 (χ²) 測驗驗證各地雨日序列分佈 是否合乎 馬可夫 鏈模式。 由表三可知,臺北(A)、臺中(B)、臺東(D) 三地的全年雨日序列分佈都 合乎一 階馬 可夫 鍵模 式, 而臺南(C)的全年雨日序列分佈 則合乎三階 模式。

因高階馬可夫鏈模式估算時須較長資料期間且 計算繁雜,另以臺南六月、十月及十一月各月之資 料驗證實測與理論頻度分佈是否相符。由表三E(六月),F(十月)及G(十一月)可知,雖然臺 南的全午雨日序列分佈須以較高階模式描述,但分 月的雨日序列分佈仍有符合二階模式者。

	表日	三 雨日序列之實測與理論頻度分佈比較 1950-1979
Table	3.	Observed and theoretical frequency distribution
		of rainy sequences, 1950-1979

· · · ·	• •		HANGUL I		
庆 711日		一階	模式	二階相	莫式
序列長	實測頻度	理論頻度	χ^2	理論頻度	χ^2
,1	590	542	4.251	590	0.000
.1 2 3	366	364	0.011	333	2.885
3	212	244	4.197	228	1.122
4	146	163	1.773	156	0.314
5	100	110	0.909	107	0.457
6	72	74	0.054	73	0.013
7	44	49	0.510	50	0.720
8	33	33	0.000	34	0.029
9	25	22	0.409	24	0.041
10	15	15	0.000	16	0.062
10 11	16	15 10	3.600	11	2 272
12	13	:7	5.143	8	3.125
>13	14	12	0.333	16	0.250
Σ	1646	1645	21.190	1646	11.290
		$< P_{10}^{.01}$	= 23.209	< P-30 =	12.899
	·	$>\mathbf{P}_{10}^{.02}$	= 21.161	$> P_{11}^{+50} =$	10.341

A. 臺北全年

. .

 20	, ,

階 _ 模 式 階 模 式 序列長 實測頻度 $\chi^{_2}$ 理論頻度 理論頻度 χ^2 1 440 466 1.536 466 0.000 2 280 271 0.299 3.351 251 3 4.365 140 167 2.051 158 4 96 102 0.353 0.160 100 5 68 63 0.397 63 0.397 6 39 3.103 28 39 3.103 7 19 24 1.042 1.440 25 8 14 15 0.067 16 0.250 9 10 22 5.500 10 0.000 >10 25 3.063 16 Σ 1144 1144 1143 16.66213.815 $<\!{\rm P}_{\rm s}^{.02}$ 18.168 $<\!{
m P}_{i}^{_{05}}$ 14.067 $>\! P_8^{\cdot 05}$ 15.507 $>\!{\bf P}_{7}^{,10}$ 12.017

B. 臺中全年

t t		·	C. 臺南	南全年			
序列長	實測頻度	一 階	模式	二階	模式	三 階	模 式
11/112	FL BRIDE DE	理論頻度	χ^2	理論頻度	χ^2	理論頻度	χ^{z}
1	543	473	10.359	543	0.000	543	0.00(
2	279	283	0.057	229	10.917	279	0.000
3	122	169	13.071	146	3.945	112	0.893
4	79	101	4 792	<u>9</u> 3	2.108	76	1.066
5	53	60	0.817	59	0.610	52	0.019
6	31	36	0.694	38	1.289	36	0 ,694
7	15	21	1.714	24	3.375	24	3.375
8	14	.13	0.077	15	0,067	17	0,529
9	14	} 20	18.05	10	1.600	11	0.818
>10	25	} .20	10.00	17	3.765	24	0.042
Σ	1175	1176	49.631	1174	27.676	1174	7.430
						<p;<sup>30</p;<sup>	= 8.383
		$> {\rm P_8^{,01}}$ =	= 20.090	$> P_{s}^{.01} =$	= 20.090	$>\!{f P_7^{:50}}$:	- 6.340

.

- 21 -	-
--------	---

序列長	實測頻度	一階	模式	二階	模 式
	具侧旗及	理論頻度	χ^2	理論頻度	X2
1	636	622	0.315	636	0.000
2	366	373	0.131	361	0.069
2 3	241	223	1.453	219	2.210
4	117	134	2.157	132	1.705
5	70	80	1.250	80	1.250
5 6	36	48	3.000	48	3.000
7	32	29	0.310	29	0.310
8	16	17	0.059	18	0.222
9	11	10	0.100	11	0.000
>10	26	14	10.286	15	8.067
, Σ	1551	1550	19.061	1549	16.833
		$< P_{9}^{.02}$	= 19.679	$< P_{i}^{02}$	= 18.475
		$>\!{f P_9^{.05}}$	16.919	$> {\tt P}_{7}^{\cdot_{01}}$	- 16.622

D. 臺東全年

E. 臺南六月

序列長	實測頻度	二階模	式
177JR	其例规以	理論頻度	χ^2
1	40	40	0.000
2	18	21	0.429
3	17	15	0.267
. 4	14	11	0.818
5	9	8	0.111
6	7	6	0.166
> 7	14	16	0.250
Σ	119	117	2.041
	· · ·	$< P_{5}^{80} =$	2.343
		$>P_{5}^{90}$ =	1.610

F. 臺南十月

序列長	實測頻度	二階相	莫式
/1-/14		理論頻度	X^2
1	42	44	0.091
2	17	15	0.266
> 3	12	12	0.000
Σ	71	71	0.357
		$< P_1^{.50} =$	0.455
	•	$> P_1^{.70} =$	0.148
In case of the second sec			

- 22 -

序列長	實測頻度	二 階 理論頻度	模式: X ⁸
1	28	28	0.000
2	23	21	0. 190
> 3	4	6	0.667
<u>.</u>	55	55	0.857
		$<\!\mathrm{P_{i}}^{\mathrm{sn}}$	= 1.074
VII		$>\! P_1^{.50}$	= 0.455

G. 豪南十一月

由以上實測與理論頻度分佈比較可知,如雨日 序列分佈合於一階模式者亦可利用二階模式加以描述。又因較高階的模式對於持續較久的雨日序列估 算結果較佳,所以計畫中決定以二階馬夫鏈模式估 算各地區的雨日持續機率。

四、降雨持續性對聯合收穫機 使用效率之影響

為探討各地區水稻收穫時期(表四)中,因降 兩使聯合收穫機不適宜作業的機率,首先計算各月 分的條件機率,結果見表五。

表四	各地區水稻收穫滴期
24 F-1	「ロノビビビス」、「ロバス「空川町泉片

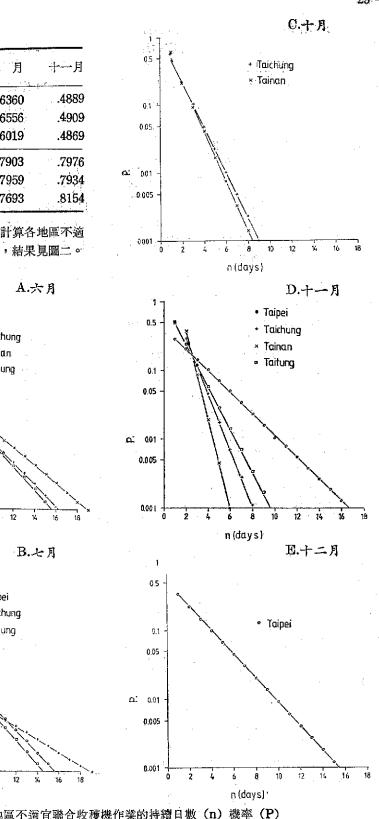
Table 4.	Harvesting period
þ	in various regions

期作	收穫適期
1	7月上旬~7月下旬
2	11月中旬~12月上旬
1	6月中旬~7月上旬
2	10月中旬~11月下旬
1	6月上旬~6月下旬
2	10月上旬~11月中旬
1	6月中旬~7月上旬
2	11月上旬~11月下旬
	1 2 1 2 1 2 1 2 1

表五 水稻收穫期間的雨日及乾日條件機率

Table 5, Conditional probability of rainy and dry day during harvesting period

A. 臺 北

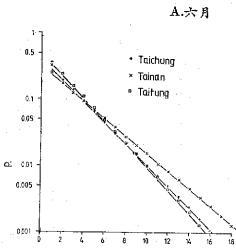

月份條件機率	七月	十一月	十二月
P (W/W)	.6650	.6989	.6709
P (W/WW)	.6801	.6954	.6704
P (W/DW)	.6350	.7071	.6717
P (D/D)	.7152	.6764	.6968
P (D/DD)	.7198	.6942	.6948
P (D/WD)	.7037	.6391	.7015
· · · · ·			

		В.	臺	中			
條件機	月分☆	く月	七	月	+	月	十一月
P (W/	'W)	.6761	.5	311	.4	384	.4471
P (W/	WW)	.6935	.8	000	.4	688	.3947
P (W/	DW)	.6400	.2	265	.4	146	.4894
P (D/I	D)	.6952	6	725	.9	299	.8985
P (D /I	DD)	,7176	.6	871	.9	356	.9053
P (D/	WD)	.6439	.6	424	.8	548	.8382

C.	臺	南
----	---	---

月份條件機率	六月	十月	十一月
P (W/W)	.7180	.4035	.3889
P (W/WW)	.7393	.4348	.2286
P-(W/DW)	.6638	-3823	.4909
P (D/D)	.7271	.9239	.9214
P (D/DD)	.7,319	.9308	.9 205
P . (D/WD)	.7143	.8400	.9310

- 23----



圖二 各地區不適宜聯合收獲機作業的持續日數 (n) 機率 (P) Fig. 2. Probalility (P.) of persistent unfavorable working days (n) for rice combine in various regions.

D. 臺 東

· · · · · · · · · · · · · · · · · · ·			
月 份 條件機率	六月	七月	十一月
P (W/W)	.6943	.6360	.4889
P (W/WW)	.6708	.6556	.4909
P (W/DW)	.7476	.6019	.4869
P (D/D)	.7431	.7903	.7976
P (D/DD)	.7743	.7959	.7934
P (D/WD)	.6529	.7693	.8154
			A Contraction of the second

根據二階馬可夫鏈模式,分別計算各地區不適 宜聯合收獲機作業的持續日數機率,結果見圖二。

n(days)

8 10

n (days)

6

1

Q.5

0.1

0.05

0.005

0.001

+

ż

o.01 کړ

圖中所示為各 地區 不適宜 作業 日數「恰好」 持續 n天的機率。例如一期作時,除臺中在七月有 較佳作業條件外,「恰好」連續四天不適宜聯合收 穫機作業的機率都已接近十分之一。又「至少」持 續n天的機率因係累加大於 n 天的機率,必定大 於「恰好」持續 n 天的機率。

此處討論不適宜聯合收穫機作業的機率,是因 為由問卷調査結果已設定了大於 0.1 mm 的日降 雨量為不適宜 聯合收穫機作 業的標準,須要注意 的,是此種調查資料常不一致且偏於主觀,較難獲 知精確的定量資料。不過本文所討論的聯合收穫機 例子,因降雨對其作業能力的影響為持續的(亦即 只要有少量自由水份存在作物表面,便不適於作 業),因此比種臨界條件的設定較為可信。本計畫 所估算的機率,是較長統計期間的結果,屬於氣候 資訊(climatological information),與綜觀 預報資訊(synoptic forecast information) 在應用上有其區別。前者可用於決定設備投資,而 後者則與設備的經常作業費用有關(Beggren, 1975)。

為討論此氣候資訊的實際應用,茲以農林廳(六十九年)擴大水田經營規模改進耕作制度計畫為 例。該計畫以發揮代耕作業的實質利益著眼(鄭, 六十九年;王,六十五年)面擬推廣共同經營作 業。對於同一灌漑系統的鄰近稻田,以100-200 公 頃視為一大農場經營單位,有一育苗中心,負責供 應區內所需秧苗。並以 25 公頃的單位組成共同作 業班,分別由擁有耕耘機、挿秧機(或播種機)、 聯合收穫機及乾燥機的農民分別組成整地、挿秧(或播種)、收穫及乾燥機的農民分別組成整地、挿秧(
經農業機械基金委員會核准發售的農機各有最低作業能力標準,例如聯合收獲機要求在7000 kg/ ha 以上的高產區每小時作業 能量應多於 600 kg (經濟部、六十八年)。據此並參酌廠商規格,訂 三行式聯合收獲機的作業能量為 0.15 ha/hr。

購置農業機械設備,須以農場作業面積為依據,其關係可用下式表之(關,六十七年)

式中 S.: 各種作業的可能作業面積 (ha)

P:作業適期的總日數 (d)

R:不適於作業日數 (d)

C:作業機械的作業能量(ha/hr)

T:每日實際作業時數(hr)

m:作業所需次數,例如犂地需要對全農 場實施兩次或更多次才能完成。

以聯合收穫機在共同作業班內的 情形 而言 , S_r 以 25 ha, C以 0.15 ha/hr, T以 6 hrs, m以1代入(7)式,則 P-R=28。

如果每一共同作業班都配置三臺聯合收獲機, 則 P-R=9。意即以現行共同經營計畫,為順利完 成機械收穫作業,則在收穫適期中至少須有9天以 上的完全作業日數。

對於150 公頃左右的地區而言,作業適期大致 不超過二個星期。尤其因農民有集中於適期中間幾 天作業的偏好,更使工作日數縮短(賴,五十九 年)。

如以十四天為收穫適期,則因降雨使得機械收 穫難以完成的情況,是在收穫期中不適宜聯合收穫 機作業的日數持續6日以上(至少6日)的情況。 各地區不適宜完成收穫作業的機率見表六。

表六 依共同及委託經營計畫配置農機時, 各地區不適於完成收穫作業的機率 Table 6. Probability of delaying harvest of 25 ha. district

with 3 rice combines in various regions

地	區.	期作	月份	機率
臺 北	ゴレ	1	7	.1348
	2	11 12	.1643 .1347	
臺巾	1	6 7	.1468 .0912	
	2	10 11	.0196 .0115	
		1	6	.1971
<u></u>	臺南	2	10 11	.0248 .0012
	1	6 7	.1504 .1102	
臺	東	2	11	.0278

- 25 ---

表六中最值得注意的是,在 25 公頃面積之中 配置三臺聯合收穫機時,在一期作,每箇共同作業 班都可能感到機械不足,不能順利完成收割的機會 在十分之一到五分之一。最根本的解決方法自然是 機械的改良,否則勢必需要再增加各地區的聯合收 穫機配置量,以爭取在作業適期中完成作業。不過 倚須注意的是,二期作時,除臺北而外,各地區的 天氣狀況都很適合聯合收穫機作業,則因肆應一期 作不利狀況而增配的農機又將閒置,不能完全利用 ,所以以現行計畫為準配置固定數量(3臺)的聯 合收穫機於臺中、臺南、臺東等區,另外加强一期 作時由他處調來機械似較經濟可行。至於臺北因一 、二期作都極不適宜利用聯合收穫機,為順利完成 作業,配置多於3臺的機械極爲必需。

五、結 論

使用聯合收穫機收獲水稻時,因降雨使得稻株 濕潤後,極不適於聯合收獲機作業,機械利用效率 低降。

應用問卷調查方法,歸納農民關於降雨影響農 機作業的經驗,藉以決定當日降雨量大於或等於 0.1 mm 時,為不適宜聯合收獲機作業的條件,稱 為雨日。

臺北、臺中、臺南及臺東四地區,以上述標準 區分的雨日序列分佈,經證明合於二階馬可夫鍵模 式。根據該模式可計算各地區於水稻收穫期間,不 適宜使用聯合收穫機的持續雨日機率。

各地區配置農機時,如能參考此類機率,預估 該地區可能作業日數,以便決定是否應該增加農機 的購置數量,或是設法由別的地區調配農機,則能 避免因不利天氣的影響而延誤作業且能獲致經濟效 益。

六、誌 謝

本文係國科會補助專題計畫(NSC-69B-0409 -24(02))的部分報告,承中央氣象吳局長宗堯、 張副局長領孝、郭組長文鑅及農發會彭技正添松提 示改進意見及參考資料,方能完成。作者等謹致最 誠摯的謝意。

七、参考文献

 王益滔,1976,臺灣代耕制度之調查研究, 臺灣土地金融季刊 13 (2&3)。

- . 威啓動、嚴夢輝、1978, 氣象統計學、復興 書局 359 pp。
- 彭 立, 1968, 臺北兩日之機率與持續性, 臺大理學院地理學系研究報告第五期:107-114。
- 黄陽仁,1972,農業機械於水田行走性能之 研究曰,農林學報第三十一輯:91-100。
- 5. 開昌揚譯, 1976, 農業機械化技術, 徐氏基 金會 504 pp。
- 農林廳,1980,七十年度擴大水田經營規模 改進耕作制度計畫。
- 2. 農試所,1972、1974、1975、1977、1979、 1980,水稻聯合收獲機改良試驗,農試所 六十、六十二、六十三、六十五、六十七及 六十八年年報。
- 8. 鄔清標,1973,新型農機性能測定試驗,臺 灣農業9(1):134-141。
- 賴文輝,1970,機耕水準的配合及其效益的 分析,中研院經濟研究所經濟論文專輯
 • 213-232。
- 10. 鄭義雄, 1980, 代耕對農業機械化之重要性, ·臺灣農業 16 (2):19-26。
- BEGGREN, R., 1975, Economic benefits of climatological services, WMO. Technical Note No. 145.
- CASKEY, J. S., 1963, A Markov chain model for the probability of precipitation occurence in intervals of various length, Monthly Weather Review 91 (6):298-301.
- 13. CHANG, J. H., 1968, Climate and agriculture, Aldine XVI+304 pp.
- 14. DALTON, G. E., 1974, The effect of weather on the choice and operation of harvesting machinery in the United Kindom, Weather 29 (7):252-60.
- FEYERHERM, A. M. and BARK, L. D., 1965, Statistical methods for persistent precipitation patterns, J. of Applied Meteorology 4:320-28.
- 16. FEYERHERM, A. M. and BARK, L. D., 1967, Goodness of fit of a

Markov chain model for sequences of wet and dry days, J. of Applied Meteorology 6:770-73.

- GABRIEL, K. R. and NEUMANN, J. 1957, On a distribution of weather cycles by length, Quart. J. R. Met. Soc. 83:375-80.
- HSU, S. H. and SAKANOUE, T., 1975, Probability and persistence of rainy days at Fukuoka, Sci. Bull. Fac. Agr. Kyushu Univ. 29(4): 163-71 (in Japanese).

19. PENG, L., 1967a, Wet and dry sequ-

ences at Taipei, Bulletin of Institute of Geophysics 1:28-35.

- 20. PENG, L., 1967b, Second and higher order stationary Markov chain model of daily rainfall occurence, Bulletin of Institute of Geophysic 2:44-55.
- WEISS, L. L., 1964, Sequences of wet or dry days described by a Markov chain probability model, Monthly Weather Review 22(4): 169-76.

-26 -

1980年諾瑞斯颱風之分析報告

A Report on the Typhoon Norris in 1980

任 立 渝 毂 文 逵

Li-Yu Jen

Wen-Kuei Hwah

ABSTRACT

Norris, the twelfth typhoon in the western North Pacific, was the first one attacked Taiwan in 1980. Under the control of apparent steering flow in upper level its moving direction and speed kept steady, and especially its track coincided with the steering field of 3-level (700, 500, 300mb) mean flow chaft.

Norris landed in the vicinity of I-Lan at 1517 Z on August 27, The intensity of Norris decreased from maximum winds 85 kts occurred in the period 0600 Z-1200 Z on the same day to 45 kts (47 % decrease) reported at 0600Z on August 28. To verify the vector and right angle errors for 12, 24, and 48hours Norris position prediction, some objective typhoon track forecasting methods was applied and discussed respectively.

一、前

膏

民國六十九年天氣異常,四月下旬冷鋒頻繁, 雨量偏多,到梅雨季時,因太平洋高氛壓位置較氣 候值偏北,鋒面帶及降雨區移到長江流域,使今年 梅雨不顯。根據研究梅雨的平均時期從5月17日 到6月 20 日(陳正改、蔡清彥1980),這段時間的平 均雨量為:臺北353公厘、臺中497公厘、臺南 399 公厘、高雄428 公厘(陳泰然1977),今年這 四個地方的雨量分別為250、26、2及19公厘。 7 月以後太平洋高氣壓之位置反較氣候值偏南,因 此颱風或熱帶性低氣壓較難發展,就是生成颱風, 路徑亦偏南經過菲律賓一帶。因此造成臺灣地區的 嚴重乾旱,不但農作物損失慘重,甚至影響自來水 之供應,臺北市自7月28日起,實施分區停水, 進而隔日供水,可見乾旱程度之嚴重,唯有依靠颱 風帶來充沛雨量,才能解決乾旱現象,至此時各界 一致盼望着颱風之來臨。

直到8月中旬以後,太平洋高氣壓逐漸北移, 21日在關島西北方始有氣旋型環流形成,25日發展 成諾瑞斯颱風,在各界盼望下,以西北的路徑直奔 臺灣而來 , 27 日 23 時 17 分颱風中心 登陸宜蘭附 近,為民國 69 年第一個侵臺颱風,同時給北部及

中部地區帶來充足雨水,解決了臺灣北部及中部乾 旱問题,臺北自來水公司亦於28日下午6時宣佈 全面恢復供水,報紙上也稱為黃金颱風,也許諾瑞 斯颱風是有史以來最受歡迎之颱風。

二、形成、發展及移動經過

8 月上旬太平洋高氣壓之脊線通過臺灣上空, 使熱帶擾動或低氣壓皆以偏西路徑通過菲律賓,臺 灣地區為炎熱少雨的天氣,直到 22 日有一熱帶性 低氣壓在呂宋島東方近海向西移動,其後相隔約二 千公里處有一氣旋型環流,開始形成,此時200mb 等壓面圖上在150°E附近,有高層槽線(TUTT) 向東移動,23日移至此氣旋環流上空,見圖1。再 從三層平均圖 (700 mb、500 mb、300 mb 三 層)上可見在環流區及附近地區的平均風速很小, 表示垂直風切甚小。這一帶的海水溫度在 29°C 以 上。這些皆是造成擾動發展的有利條件,其他之條 件如條件不穩定度之强度、中對流層溫度及低對流 層溫旋率等,因限於資料缺乏或計算困難,無法得 知其確實情形。24日00Z美軍飛機偵察報告在擾 動中心附近風速已達 30KTS, 並以 10KTS 速 度向西北西移動,當時地面低壓鋒面帶在35°N附 近,太平洋高氣壓有二中心,主中心在 27°N、

- 27 -

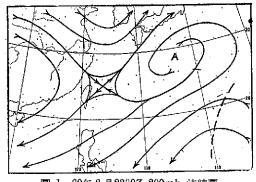


圖 1. 69年8月2800Z 200mb 流線圖 Fig. 1. Stream line of 200mb at 2800Z Aug. 1980.

155°E 附近,另一中心在 23°N、125°E 一帶, 範圍强度均較弱,見圖2。高層形式(參考三層平 均圖)亦有二個反氣旋中心,分別在27°N、125°E 及 28°N、150°E 附近,範圍强度相似,平均氣 流偏西,見圖3,低層氣流以主高壓為主為西北向 ,如取高、低層平均則為西北西向,此時之熱帶性 低氣壓亦以西北西方向進行。

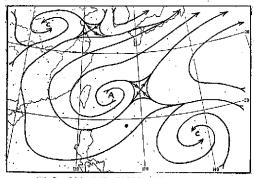


圖 2. 69年8月 2400Z 850mb 流線圖 Fig. 2. Stream line of 850mb at 2400Z Aug. 1980.

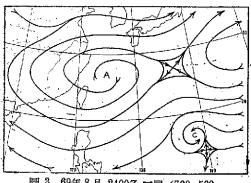


圖 3. 69年 8月 2400Z 三層 (700, 500, 300mb) 平均流線圖 Fig. 3 3-level mean flow chart at 2400Z Aug. 1980. TUTT 以一天 10 個經度之速度向 東移, 24 日 00Z 已移到 130°E,此熱帶性低氣壓上空 為反氣旋區,更有助於發展。到 25 日 00Z 時風 速為 35 KTS,達到輕度颱風之强度,為本年第12 個颱風,命名為諾瑞斯 (NORRIS)。此時於臺灣 附近低層之高氣壓强度及範圍均明顯減小,雖然高 層之反氣旋並未減弱,但向東移,一日間移動8個 經度,見圖4及圖5。26 日 00Z 原位在諾瑞斯 北方之反氣旋中心已移到東北方,颱風亦由西北西 轉為西北方向前進。其强度繼續增强,到 26 日18Z 達中度颱風,此後之高低層駛流場均顯示諾瑞斯將 以穩定之速度前進,從圖6 至圖9 的 26 日 12Z 到 28日 00Z 連續時間三層平均圖上可見其情形。

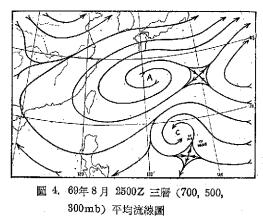
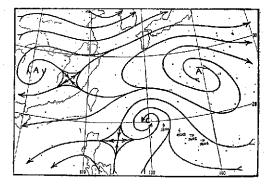



Fig. 4 3-level mean flow chart at 2500Z Aug. 1980.

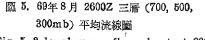


Fig. 5 3-level mean flow chart at 2600Z Aug. 1980.

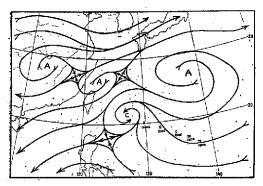
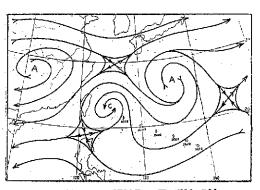
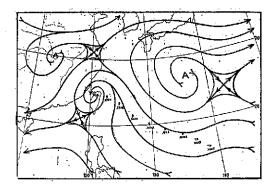




圖 6. 69年8月 2612Z 三層 (700, 500, 800mb) 平均流線圖

Fig. 6. 3-level mean flow chart at 2612Z Aug. 1980.

- 圖 7. 69年8月 2700Z 三層 (700, 500, 300mb) 平均流線圖
- Fig. 7. 3-level mean flow chart at 2700Z Aug. 1980.

[] 9. 69年8月 2800Z 三層 (700, 500, 300mb) 平均流線圖
 Fig. 9. 3-level mean flow chart at 2800Z

Aug. 1980.

花蓮雷達站於 27 日 02 Z 開始看到颱風中心 ,至此可有每小時的中心位置、方向、速率等之資 料, 27 日 00 Z 强度增到 75 K T S, 06 Z 及 12 Z 更高達 85 K T S, 為本颱風最强盛時期,圖 10 為 花蓮雷達站所攝得 08 Z (地方時 16 點) 最强盛 時之回波照片。 27 日 15 17 Z (地方時 23 點 17 分)颱風中心在宜蘭附近登陸,從雷達回波照片上 可清楚看到登陸情形,見圖11。登陸後移速減慢, 通過臺灣的時間約8小時,28 日 00 Z 已到新竹外 海,强度亦很快減弱到 55 K T S, 28 日 06 Z 通過 馬祖南方海面,强度更降至 40 K T S, 大約在 07 Z 登陸中國大陸, 再減弱為熱帶性低氣壓, 通過臺 灣海峽的時間約8小時,比平均值 12.75 小時 (Brand and Blelloch 1974) 快約三分之一。

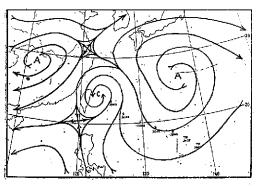


圖 8. 69年8月 2712Z 三層 (700, 500, 300mb) 平均流線圖

Fig. 8. 3-level mean flow chart at 2712Z Aug. 1980

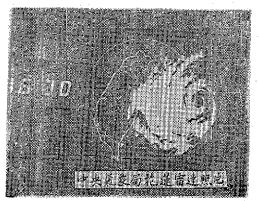
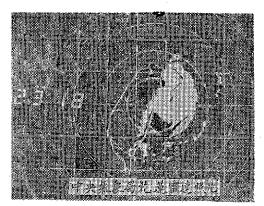



圖 10. 諾瑞斯颱風強度最強時期的重達回波照片 Fig. 10. Hwalien PPL radar picture at 2706Z Aug. 1980.

- 30 -

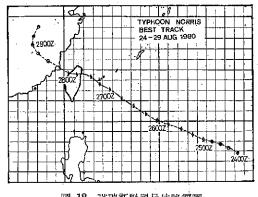
圖 11. 諸瑞斯颱風中心登陸宜蘭時27日23時18分 的雷達回波照片

Fig. 11. Hwalien PPL radar picture at 271518Z Aug. 1980.

一般而言,颱風行徑主要受駛流場之導引,而 大範圍之基本駛流場仍以太平洋高氣壓環流為主, 當高、低層氣流形式不一致時,颱風移動以何層為 主則不一,所以要用平均憅流場來判斷颱風路徑所 得效果較佳。根據曾振發、蔡清彥 1980 年之研究 ,三層平均圖(700mb、500mb、300mb)之駛 流場與各月份的颱風移動方向最為一致。如為西進 **颱風**,控制高氣壓垂直分佈呈規則線性變化,因此 三層平均圖與 500mb 圖相似。北進颱風時,高氣 歷之垂直變化較不規則,一般高層之駛流較弱,此 時三層平均圖之駛流與 700mb 者相接近。如為不 規則路徑颱風 , 發生在駛流 場甚為微弱而 失去導 引效果時 。 再根據三層空間數 值模式實 驗的結論 (Madala and Piacsek, 1975; Kuo, 1069; Johnen, 1977), 颱風進行方向約在質量加權之 垂直平均 (mass weighted mean) 導引氣流 偏右5度方向。本次颱風路徑與三層平均圖之駛流 場相一致(見圖3至圖9)。由此可見,三層平均 圖實為預報颱風路徑之最佳參考資料之一,從實際 經驗上,每當颱風路徑發生變化時,三層平均圖均 "能顯示出其可能改變之方向,但問題是在預報時間 內,沒有當時之三層平均圖可供參考(每 12 小時 才有一張,且較觀測時間落後約3小時),影響預 報之判斷。

三、最佳路徑及各種颱風路徑 預報方法之校驗

圖 12 為諾瑞斯颱風之最佳路徑圖,其中心位


置、移動方向及强度等資料見表1。

本局目前已採用之颱風路 徑客 觀預 報方 法有 HURRAN、P.C.、CLIPER、ARAKAWA 、及 CWB-80 等,應用於本次颱風再加上中央 氣象局 (CWB) 及關島美軍 (PGTW) 的預報 位置與最佳路徑 中心位置 互相比較,以方位誤差 (vector error) 及正角誤差 (right angle error)分別校驗,其結果如表 2 及表 3。由於中 央氣象局在颱風侵襲期間 (27 日 00Z 以後) 只有 12 小時後的預報位置,其他時間 (25日 06Z 到 26 日 18Z) 為 24 小時預報,為便於互相比較乃以中 央氣象局所發佈預報之次數為準,另加 48 小時的 預報製成表 2 及表 3,加以校驗。

表 2 方位誤差校驗結果顯示:(1) 12 小時預報 共三次(2700Z、06Z、12Z)的平均誤差值 , 以 HURRAN 的 52 公里最佳, 其次是 CWB 及 P. C 法的 65 公里 , 繼則 依序為 CLIPER 的 75 公里, ARAKAWA 的 83 公里, CWB-80 的 92 公里, 最差是 PGTW 的 197 公里。 (2) 24 小時預報從 26 日 06Z 到 27 日 12Z 共 6 次的平均誤差值,以 CLIPER 的 94 公里居首, HURRAN 的 99 公里次之, P.C 的 137 公里 再次之,再下來是 ARAKAWA 的 144 公里及 CWB-80 的 169 公里,仍以 PGTW 的 301 公 里最後。因 CWB 只有三次預報,不加入比較, 如從 25 日 06 Z 到 26 日 18 Z 共7 次平均, 誤 差為 105 公里,較 PGTW 的 118 公里為佳。(3) 48 小時 預報 仍從 26 日 06 Z 到 27 日 12 Z 共 6 次平均加以比較 , 仍 以 CLIPER 的 173 公里 領先, HURRAN 的 234 公里第二, CWB-80 的 272 公里第三,以 PGTW 的 837 公里最差。

從這三種結果比較,均以 PGTW 的誤差最 大,主要是 PGTW 的預報一直認為颱風 將轉向 東北,結果是登陸中國大陸後在 29 日才開始轉向 ,導致 PGTW 的嚴重錯誤,48 小時的最大誤 差曾達 1230 公里,令人難以相信。CWB 的 24 小時預報誤差平均為 105 公里,12 小時預報只有 50 公里,數值都不大,但臺灣全長約四百公里, 只要少許誤差,登陸地點大不相同,由此可見颱風 路徑預報作業之困難。

表3是正角誤差之校驗,正值表示向右偏,負 值為向左偏,平均值用絕對值平均,其結果顯示: (1) CWB 之預報在 27 日 00Z 以前8次內,1次 (26 日 12 日) 沒有偏差外,其他7 次均向左偏, 27 日 06Z 及 12Z 則向右偏,平均誤差值 24 小時預報為 35 公里,12 小時預報為 52 公里。(2) PGTW 的 24 小時預報在 26 日 12Z 以前向左 偏平均 54 公里,26 日 18Z 以後向右偏,誤差 值愈來愈大。48 小時則幾乎完全右偏,差值驚人。(3)各種客觀預報法大多是向右偏,24 小時預報 ARAKAWA 完全向右偏,平均差值 132 公里, 其他 HURRAN、CLIPER、P.C 及 CWB -80 從 26 日 18Z 以後向右偏,以前向左偏, 誤差值以 CLIPER 的 58 公里最佳,HURRAN 的 70 公里次之,P.C 的 112 公里再次之。(4) 48 小時預報除 CLIPER 外,其他方法幾乎完全 向右偏,誤差值仍以 CLIPER 的 79 公里最好, 再次是 HURRAN 的 157 公里,CWB--80 的 193 公里, P. C 的 331 公里最差。

I2. 諾瑞斯颱風最佳路徑圖 Fig. 12 Best track of typhoon Norris (2400Z-2912Z Aug. 1980)

ed. HC	間	中心。	位置	फ गेरे	最大	進行	時	時 間	中心	位置	中心	最大	進行方向	時
H	時	北緯	束 經	中心氣壓	最 大 風速	進行方向	速	日時	北緯	東 經	中心氣壓	最大風速	方向	速
24	0 8	16,8	138.3		30	295	10	27 08	23,1	124.8	960		295	13
	14	17.3	137,4		80	294	10	. 14	23.6	123.7	955	85	305	12
	20	17.7	136.5	1000	- 30	289	10	20	24.3	122.7	950	· 85	234	15
25	02	18.0	135.6	1000	30	283	9	28 02	24,6	121,3	970	. 80	280	8
	.03	18,2	134,7	998	35	293	14	08	24.7	120.6	980	55	295	13
	14	18.7	183.5	998	35	293	14	14	25.2	119.5	990	40	298	15
	20	19.2	132.3	995	40	291	14	20	25.9	118.2	995	30	297	13
26	02	19.7	131.0	995	40	290	. 12	29 02	26.6	117.1		1	1	
	08	20.1	129.8	990	45	293	16	08	27,4	116.4				
	14	20,7	128.6	985	5 5 (302	15	14	28.2	116,6				
	20	21,5	127.2	980	60	304	14	20	29.1	117.1				
27	02	22.3	126.0	975	65	304	14							

表 1. 諾 瑞 斯 颱 風 最 佳 路 徑 資 料 表 Table 1. The best track positions of typhoon Norris

		abie z,			10015	ioreca			TOP 5		1 y 101	THOLL	is typ	noon i	n 1980	•		
預報法	C1	WВ		PGTW	7 .	E	IURRA	N	CLI	PER		P. C.	• . '		CWB-	80	ARAI	KAWA
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	12 (小時)	24	12	24	48	12	24	48	24	48	12	24	* 48	12	24	48	12	24
2506		135		100	205											[
2512		140		160.	280												}	
2518		65		65	275		-											
2600		55		7 5 ·	240						· .							
2606		105		. 85	360		70	180	130	205	-	140	190		50	. 205		70
2612	-	150		70	535		20	190	· 90	210		55	380	-	85	270		35
2618		85		270	915	-	150	440	115	260		110	520		115	300		.180
平 均 誤 差 (2606—2618)		113		142	605		80	270	112	225		102	- 847		83	258		95
平均誤差 (2506—2618)		105	-	118	400				٠.			. * *	-					
2700	40	-	175	480	1230	50	135	:19 0	80	130	50	. 175	665	75	290	380	50	260
2706	50	-	140	390	1005	.0	45	125	70	80	45	125	410	75	190	135	65	175
2712	105		275	-510	970	105	170	280	75	150	100	215	400	125	285	340	135	140
平均誤差 (2700-2712)	65		197	460	1068	52	117	198	75	120	65	172	492	92	255	285	83	192
平均誤差 (2606—2712)				301	837		99	234	94	173		187	420		169	272		144

表 2. 各種客觀颱風路徑預報法及 CWB, PGTW 預報之方位誤差比較

Table 2. 12, 24, 48 hours forecast vector error summary for Norris typhoon in 1980.

表 3. 各種客觀颱風路徑預報法及 CWB. PGTW 預報之正角誤差比較

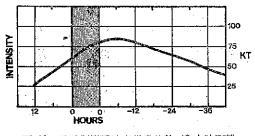

															-	<u>.</u>		_			-									_					
預報法	C	٧B			·]	PG'	rw				н	JR	RA	N		C	LII	?E]	R			Р.	Ċ.				C۱	NВ	- 8	0		AR	AK	A۷	VA.
- 『記』 \ (公里)]	1 <u>2</u> (小時)	2	4	1	2	2	4	4	8	12	3	2	4	4	8	2	4	4	8	12	2	2	ŧ	4 8	3	12		24	i	4	8	1	2	2	<u>4</u>
2506		-	35			_	45	-	10														-	•											
2512		_	40			_	50	÷	25																							-			
2518		-	30				30	ተ	215														•								i				
2600		-	45			-	70	+	195																				1						
2606		-	80			<u>_</u>	25	-†-	800			_	20	÷	105		70	_	70			- :	L O O	÷	70			_	60	÷	10	-		ł	40
2612			0			-	100	+	400				15	≁	140	-	30	÷	45				25	+ :	230				10	÷	95			Ŧ	30
2618		-	15			+	255	÷	690			÷	120	÷	280	+	30	÷	80			-ŀ-	90	+ (110			+ :	100	÷	260			+	180
平均誤差 (2606—2618)			3 2		Ē		127		463		1		52		175		43		65				72	:	287				57	1	122			`	83
平均設差 (2508—2618)			35				82		2 62																				:						
2700	- 30			ł	175	÷	460	 +- 	925	+	15	+	100	÷	135	+	80	+	35	÷	50	+	175	+ 1	560	÷	70	+ :	290	+	360	 +- 	50	+	240
2706	+ 25			+	145	÷	360	+	8 0 0	+	10	: +	10	-	25	+	60		75	÷	4 0	+-	120		355	÷	25	+)	190	+	125	+	65	. + 	17 0
2712	+ 100)		÷	170	+	39 5	+	8 0 0	+	110	÷	155	+	255	+	75	_	170	+ 1	10 0	+ 1	160	÷.	360	+ 1	05	+ :	265	+	805	÷	135	 +-	130
平均誤差 (2700—2712)	52				163		405		842		45		88		138		72		93	-	63		152		125		67	:	248		2 63		83		180
平均誤 - 概 (2606—2712)							266		653				70	}	157		58		79				112	:	331				153	- ·	193				132
註:①	+表向	右偏	į,-	-表	向方	偏	•	(2平	遊値	採	絕對	l値Z	下步	•															_				_	

Table 3. 12, 24, 48 hours forecast right angle error summary for Norris typhoon in 1980.

- 34 --

四、强度、移速之變化及 各地之雨量及風速

諾瑞斯颱風於 25 日 00乙 中心附近最大風速 為 35 KTS,其後威力不斷增强, 26 日 18 乙增 至 65 KTS,成為中度颱風,到 27 日 00 乙 及 06 乙 更達 85 KTS,為最强盛時期。登陸後强度 迅速減弱,通過臺灣時,由80 KTS降到 55 KTS ,經過臺灣海峽後進入中國大陸,再由 55 KTS 減小到 30 KTS,成為熱帶性低氣壓,其變化情 形如圖 13 。

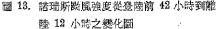


Fig. 13. Intensity profile of typhoon Norris crossing Taiwan from 42hrs prior to hitting Taiwan to 12hrs after leaving.

從圖中可見本次颱風之强度在登陸約9小時以 前,威力一直增加,到前9至3小時達最高峯,登 陸後迅速降低,在陸地上時間約有8小時,强度減 少 25 KTS , 離陸後繼續下降。 此颱風强度的變 化與陳泰然、何怡帆, 1980年的研究結果相似。 另外 Brand and Blelloch, 1974 年研究 1960 至 1972 年的侵臺 22 個强度達中度以上颱風的强 度變化,其平均情形是:中度颱風(10個個案)在 登陸前 24 到 12 小時之間,威力達最高,而强烈 嚴風 (12個個案) 則在登陸前 30 到 12 小時, 威 力最强。從登陸前6小時到離陸後6小時,中度殿 風强度從 75 KTS 減小到 45 KTS,減弱 40 % 。而强烈颱風從 115 KTS 降到 65 KTS , 減率 篇 45 %。本次颱風在距離陸地前及後 6 小時,强 度從 80 KTS 降到 45 KTS, 減小 44 %, 與前 述結果相似。

諾瑞斯颱風移速變化情形,如圖 14 。從圖中 可見在登陸前 21 小時移速開始稍減弱,到前9小 時最低,以後加速,登陸後迅速減速,離陸後再加 速,整個而言,速率變化不大。一般情形,强烈與 中度颱風在登陸前之速率變化並不一致;强烈颱風 在前 48 小時到 24 小時之間移速增加,前 24 小 時到 12 小時移速稍減慢,然後再加速到前 3 小時 才滅速。中度颱風 則在登陸前約 30 小時速率突 增,到前約 20 小時稍減速直到登陸前 3-6 小時 達最低,以後迅速加速通過臺灣 (Brand and Blelloch, 1974)。本次颱風速率變化情形與强烈 颱風較相近。

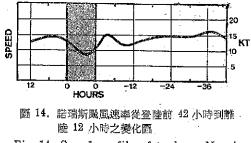


Fig. 14. Speed profile of typhoon Norris crossing Taiwan from 42hrs priors to hitting Taiwan to 12hrs after leaving.

表4為各地區氣象統計表,北部地區從27日 上午開始降雨,到下午東部及中部亦開始下雨,至 傍晚全省各地都普遍降雨。最大降雨量在阿里山附 近,約 600 mm 左右。從宜蘭附近山區至中央山 脈,雨量在 250 mm 以上到 400 mm,陽明山山 區在 150 mm 左右。 平地降雨以中部、臺中、南 投、嘉義地區最多, 大約在 200 到 250 mm, 北 部地區平均約在 100 mm,東部約 50 到 100mm ,東南部及南部地區在 50 mm 以下 , 愈往南降 雨愈少, 蘭嶼雨量記錄為0。總降雨量情形大致如 上所述,但降雨强度時間因地區而有很大不同;北 部地區在 27 日的降雨量約佔總雨量的三分之二, 也就是隆雨主要集中在颱風中心登陸前。中部地區 降雨在 28 日約佔三分之二,也就是颱風登陸後開 始降大雨,尤其山區更為明顯,如阿里山在登陸前 降雨量只有 130 mm , 登陸後 28 日的降雨量約 有 400 mm,又如日月潭分别為 19 mm 及 225 mm °

各地出現風速情形, 平均風速以宜蘭最大有12 級風,彭佳嶼 10 級,其他地區都在8級以下,中 南部地區在4到6級,北部為6到8級。陣風亦以 宜蘭 15 級最强,彭佳嶼 14 級次之,北部約 12 級,中部在9到 12 級之間,南部約7到8級。整 個而言,除了宜蘭地區,因颱風中心通過風力較强

J		站	最低 	氣壓	(mb))		瞬間	最	大	風	速	(m/s)			大 風			_		(10 m/				最		大	降	水		量 	(mm)		降				量
به 	J 	,445	數値	E .	時	牙	風向	風速	E	时	分	氣壓	氣溫	濕度	風向	風速	E	時分	H H	時	分至日	時	分	一小時 內 値	E	時	分至日	時久			時	分至日	時 分	數量	日	時	分至日	時 分
费	纟佳	嶼	991.0	28.	04.	00	ESE	40,0	27.	22.	10	994.9	25,4	94	ESE	27,8	27.	22. 30	27	. 05,	00~	·		14.5	28.	00.	40~28,	01, 4	0 7.	0 28.	01.	00~28.	01. 10	50. 6	27. (03, 1	10~28.	13. 20
遺		隆	987.0	28.	05.	00	SE	85.0	28.	08,	07	988 . 5	28,4	88	NNE	19.2	27.	22, 30	27	. 13.	20~28	. 10.	40	22.0	28.	00	00~28.	01. 0	0 12	0 28.	. 00.	00~28	00. 10	114.0	27. (05. 4	£1~2 8.	14. 42
ň	ŧ	部	894,2	28.	0 5.	55	N	28.7	27.	21.	58	902.2	21.6	98	s	25.2	28,	06. 20	27	, 14.	$20 \sim 28$. 10.	30	24.8	27.	20,	50 ~2 7.	21. 5	0 13,	0 27,	21.	00~27.	21, 10	134.8	26.	05. E	50 ~ 28.	14. 17
. h	, r 子	湖	986.6	28,	04.	41									w	13.8	27.	22, 3(27	. 20.	00~27	. 24.	00	28.8	27.	23.	00~27.	24. 0	0 14	0 27.	. 23.	50~27.	24. 00	158.3	27.	0 6. j	15~28.	16. 55
<u>R</u>	ê .	北	985.7	27.	24.	00	NE	32,3	27.	. 23.	42	986,0	25.3	90	E	13.2	28.	01. 50	27	. 21	$50 \sim 28$. 02.	 10	1 9 0	27.	23.	00~27.	24. 0	0 6	5 27.	20.	50~27.	21, 00	108.0	27.	05. 8	35~28.	16. 50
Ŷ	Ť	竹	980,5	28.	04.	00	NNE	22.6	28.	. 00.	. 20	98 6,8	25,1	91	NNE	11,5	28.	01. 00	28	. 0 0.	20~28	. 01.	00	24.7	27.	21.	00~27.	22, 0	0 17	8 27.	. 21.	50~27.	22.00	78.0	27.	10. 2	20~28.	17. 15
	£	中	984.9	28.	03.	30	NW	20,3	28	. 03.	. 20	984,4	25 8	95	NW	8.2	28.	02. Ö) 27	. 17.	00~28	18.	00	31.5	28.	08.	10~28.	09, 1	0 9	5 28	. 08.	$20 \sim 28$.	08. 30	253.5	27.	12. 4	46~28.	17, 30
术	ř.	棲	982.9	28.	03.	10	NNW	34 9	28	. 00.	. 40	990.3	27.1	92	NNW	1			1		18~28		i	21.0	28.	06.	3 0~28.	07. 3	0 7	6 28	. 06.	50~28.	07.00	132 8	27.	11. (04~28.	15. 00
E	「月	癦	987.7	' 28.	02.	45	NW	24,0	28	. 01.	. 50	987,7	21	100	NW	1					00~28						00~28.			0 28	. 06.	00~28.	06, 10				:	15. 10
ž	ġ	湖	995,3	3 28.	05.	00	NNW	19,6	28	. 01.	52	996,4	27.6	87	' NNW]		00~28			9,5	28.	03.	15~28.	04. 1					04. 50					14. 10
- 	í.	義		ĺ			sw			•	. 35		25.8		sw	1					40~28					•	30~28.			- I			07 05					
	「里) 2992.8										13.0	100	w	i	<u> </u>				10~28		1	·.			00~28.						08. 20					17. 30
	<u>.</u>	ц	2967,6												NNW	· ·					20~28		1	1			40~28.						00, 50					15. 05
	£	南	996,2				N	17.0	27	15.	. 19	998.5	32.7	61	N			15, 25							- 1		30~28.						22. 58					13. 09
	5	雄					NW				. 07		27.3		WNW		}			01	00~28	0.9	50				30~28.			-			02.00					10. 05
	。 そ 吉						WNW	 			. 12				WNW		1				40~28			·														
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		.		• •		13.7	· -						WNW		ľ .	23: 30		. 09.	40~20	. 10					55~28.					Ţ.	14. 48					15. 40
	5	「峓						37.2							ļ	Ì		·		/ 10			0.0	1.5	28.	00.	00~28.	01. U	0 0	4 27	. 20,	04~27	20. 14	5,8	21.	19. 4	48~28.	05. 00
					00.				ļ							1				. 12.	30~28		80	•••••0						)				0				
	k	武							Ì		. 10							01. 2				•					06~28.						. 03. 30					13. 44
		東					S				. 12				SSW						40~28						10~28.						. 02. 20					12. 50
	ff -	港		·	. 00,		÷ .				, 15				3 S					s. 00.	00~28	3. 14.	00				40~28.		I.				. 11 10	6,6	27,	15,	20~28,	11. 50
	E.	蓮					SSW				. 40				SW			23, 1	2								4 <b>0~</b> 28.			.0 27	. 17.	<b>80~2</b> 7	17 40	50.0	27.	14.	35~28.	14. 10
1	1	蘭	961.1	5 27	23.	28	NE	47,5	5 27	. 23	. 30	963.6	3 26.3	3 9	3 ESE	35	27.	24. 0	2	. 21	00~28	3. 06.	00	36,8	28.	00.	00~28,	01. (	0 30	.0 28	3. 00.	00~28	. 00. 01	122,9	27	05.	5 <b>0~</b> 28.	15. 35

表 4. 侵 臺 颱 風 氣 象 統 計 表 Table 4. The extreme Weather elements from C. W. B stations during Norris Passage.

外,其他地區風力並不很强,所以受風力之損害輕 微,各地出現最大風速情形見表4。

#### 五、災 情

根據內政部警政署的調查報告,諾瑞斯颱風造 成的災害:計有二人死亡,臺北市及南投各一人; 新竹及苗栗縣各有一人失踪;宜蘭縣有六人輕重傷 。宜蘭因颱風登陸,首當其衝,房屋全倒有 45 間 ,半倒 257 間。

交通方面:縱貫線泰安與勝與間,坍方二處。 阿里山森林鐵路在獨立山與力坪間嚴重坍方,另有 十多處坍。在公路方面,中部橫貫公路梨山到大龜 嶺間及東勢至梨山間坍方多處,交通中斷。蘇花公 路蘇澳及東澳間多處坍方,交通不通。南部橫貫公 路高中至啞口坍方。臺三線頭前厝至南投間淹水, 西部幹線在彰化花壇鄉中慶村路面被山洪淹沒,無 法通行。另外雲林縣因大雨如注,多處鄉鎮淹水, 最深者達5公尺。臺中縣的大里溪堤防潰缺一百多 公尺。

電力方面;損失以宜蘭、基隆較嚴重,全省配 電線路共有七千七百三十四處損壞。其中臺北市區 有九百處,效區有一千三百七十六處受損,大都 係因鷹架倒場或招牌吹落,碰觸打斷配電線路所引 起。

從災情可以了解北部地區主要受强風的吹毀, 而中部地區則為豪雨引起,東北部地區同時受這二 者破壞。

#### 六、結 論

諾瑞斯颱風之來襲,解除了數十年來罕見之乾 旱現象,由於强度只達中度颱風,除了宜蘭的最大 風速出現12級風外,其他地區均在8級風以下,因 而造成之損害並不嚴重,可說是良性颱風,也許是 最有價值的颱風。

各種颱風客觀路徑預報法的校驗結果顯示,效 果都很好 CWB 12 小時預 報方位 誤差 為 65 公 里,24 小時誤差為 105 公里。PGTW 的預報 結果最差。

諾瑞斯强度達到輕度 颱風時 , 中心 位置已在 18°N 以上,但在 48 小時內,强度仍由 35KTS 增加到 75KTS,發展快速。其行徑方向及速率甚 為穩定,只有極小幅度正弦曲線之擺動,屬於規則 颱風,主要高空有明顯導引氣流,移動方向與三層 (700、500 及 300mb) 平均圖的駛流場相一致。 目前本局已將三層平均圖納入日常作業圖之一,對 颱風路徑預報有甚大之幫助,如能將平均之層次加 多,或可對颱風路徑預報提供更有益之參考。但目 前所有的只是每天二次定時的平均圖,往往趨不上 預報作業時間,而減低其使用價值,所以仍需發展 各層之數值預報圖,再得到所需之平均數值預報圖 ,才能眞正有預報之時效。

#### 七、參考文獻

- 陳正改、蔡清彥,1980:影響臺灣北部地區之梅雨 系統,大氣科學,第7期,49~58。
- 陳泰然,1977:臺灣地區主觀 機率 天氣 預報 之氣 候參考值分析,臺大大氣 科學系研 究報告, Prob-Fore-001號,PP85。
- 陳泰然、使怡帆,1980:夏季侵臺颱風的强度變化 研究,科學發展月刊,第8卷第8期,729— 749。
- 曾振發、蔡清彥,1980:北太平洋西部颱風路徑之 綜觀天氣研究,臺大大氣科學系研究報告, TYPN-01號,PP31。
- Brand, S. and J. W. Bielloch, 1974: Changes in the Characteristics of Typhoons Crossing the Island of Taiwan, Mon. Wea. Rev. 102, 708-713
- Gray, W. M. 1979: Hurricanes: their formation, structure and likely role in the tropical circulation, *Quart. J. Roy. Meteor. Soc.* 105, 155-218
- Johnes, R. W. 1977: Vortex Motion in a Tropical Cyclone Model, J. Atmos. Sci., 34, 1518-1527.
- Kuo, H. L. 1969: Motions of Vortices and Circulating Cylinder in Shear Flow with Friction. J. Atmos. Sci. 26, 390-398.
- Madala, R. V. and S. A. Piacsak, 1975: Numerical Simulation of Asymmetric Hurricanes on a  $\beta$ -plane with Vertical Shear, *Tellus*, 27, 453-468.

-、本刊以促進 譯述均所敵	氣象學術之研究怎	ᄚᅝᄮᄮᆞᇴᆊᆊᄪᆙ			
摆沭均所敷		<b>海目的,八有阴</b> ?	氣象理論之分析	,應用問題之探討	・,不論創作或
P4-X133171 PA	迎。				
二、本刋文字務	求簡明,文體以自	日話或淺近文言角	<b>急主體,每篇以</b>	五千字爲佳,如長	篇巨著內容特
佳者亦所歡	,迎。				
三、稿件請註明	作者真實姓名、自	主址及服務機關:	,但發表時得用	筆名。	
9、譯稿請附原	「文・如確有困難」	5請註明作者姓名	名暨原文出版年。	月及地點。	
i、稿中引用文	献請註明作者姓名	4、書名、頁數2	<b>爻出版年月</b> 。	-	
<b>ヽ、</b> 惠稿請用稿	紙繕寫清楚,並加	□標點。如屬創作	乍論著稿,請附	<b>與英文或法、</b> 德、	西文摘要。
コ、本刊對來稿	有删改權,如作者	不願刪改時請問	肇明。	н. н. н. Н	
、患稿如有附	圖務請用墨筆描編	會,以便製版。			
L、來稿無論刋	登與否概不退還,	,如須退還者請預	<b>頁先聲明,並附</b> 。	足額退稿郵資。	}
上、來稿一經刋	登、當致薄酬,立	<b>友贈送本</b> 刊及 抽日	₽本各若干册。		
と、 恵稿文貴自	負、詳細規定請加	家本學報補充稿紙	均辦理 •		
と、恵稿請寄臺	北市公園路六十四	马號中央氣象局夠	藏象學報社牧。		*
	》閱補充稿約)				
(請容					{
(請寥	~~~~~~~~~~~		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	·····	hanne
、惠稿文責自 、惠稿請寄臺	角、詳細規定請載 北市公園路六十四	家本學報補充稿	約辦理。		

------- 氣 象 學 報 補 充 稿 約 -------

 一、來稿須用稿紙(以25×24之稿紙為原則)。
 二、來稿字數以不超過15,000字,卽連同圖、表、英 文摘要以不超過10印刷頁為原則。
 三、圖及表之分量以不超過全文之1/3 為原則。
 四、英文摘要之字數以不超1,000字為原則。
 五、關於表格之注意點:

 (一)表格須另用白紙繕製。
 (二)表格上方須有標題,並加表1表2等冠號。
 (三)表格中之項目,內容應儘量簡化。表中不重 面之項目或可用文字證明者應為景彩の利3

- 要之項目或可用文字說明者應儘量避免列入 表中。
- 一 能以文字說明之小表,請採用文字說明。
- 知 原始記錄應加分析簡化後始可列入表中。
- (六) 統計分析表中顯著處,以*號(顯著)及 **號(極顯著)表之。
- (1) 表幅應考慮適合本判版幅為準。(寬度勿超 過13.5 cm)。
- (1) 表之標題應能表示內容。
- **六、關於挿圖**之規定:
  - (→) 挿圖應另貼於大張白紙上,註明作者及文 題。
  - (二) 挿圖下方須有標題,並加圖1圖2等冠號。
  - (三) 統計圖、模式圖及分佈圖一律採用120—150磅道林紙,以黑墨水繪製清楚。
  - 四 統計圖原圖幅面應在12-15cm,以便縮版。
  - 运 模式圖原圖幅面應在15-20cm,以便縮版。
  - ∀ 分佈圖原圖幅面應在30 cm 左右 ・以便縮
    版。
  - (b) 繪製繳條粗細應能供縮小至 1/8 之程度,但 不能超過縮小 1/2 之程度。
  - (1) 數字應正寫清楚,字之大小粗細應一律,至 少能供縮至1/8之程度。
  - (九) 已列表中之內容,勿再重複以挿圖表示。
  - (H) 圖之標題應能表示內容。
- 七、關於照片之規定:
  - ↔ 照片紙一律採用黑白片光面紙。

- (二) 照片幅面應在12-15 cm,以便縮版。
- (三) 照片應充分沖洗清楚,須考慮縮少至1/2時 尚能清楚之程度。
- 网 照片如有特别指明點應加圈或箭頭表明。
- 八、文稿過長,或圖表過多過大時,投稿人得自行負擔印刷費。
- 九、關於參考文献之規定:
  - (-) 參考文献以經本人確曾查閱者爲限,如係來 自轉載之其他書判時,須加註明。
  - (二) 作者姓名以後為發行年份,加以括號,然後 為雜誌或書名、卷期數及頁數。(頁數必須 註明)。
  - (三) 文字敍述中述及參考文獻時,根據文献之號 數,用斜體阿刺伯字,加以括號,如(1)(2)
     (3)等揮入文句中。
- 十、文字敍述之號次以下列為序。 中交用:→、(-) 1. (1) i. (i) 英文用:I. 1. A. a.
- 十一、每頁下端之脚註以小號1,2,3,等阿拉伯字表 之,註明於該段文字之右上角。
- 十二、文字敍述中數數字除十以下之數字,儘量用阿 拉伯字表之。
- 十三、單位須用公制。單位記號例如以m(公尺)、 cm(公分)、mm(公厘)、m³(平方公尺)、m³ (立方公尺、cc(立方公分)、1(立升)、g(公分 )、kg(公斤)、mg(公厘)、°C(攝氏度)、% (百分之一)、ppm(百萬分之一份)等表之,可 不必另用中文。
- 十四、英文題目中重要之字第一字母大寫,介題詞、 連接詞及不重要字用小寫。圖表之英文標系及各 欄英文細目,除第一字之第一字母大寫外,其餘 第一字母均小寫。參考文献中作者姓名每字全部 字母均大寫,論文名第一字母大寫。其餘均小寫 ,雜誌名或書名每字第一字母均大寫。
- 十五、作者英文名以用全名為原則 , 名在前 , 姓在 後。
- 十六、其他未盡善事項得隨時修正之。

Volume 27, Number 2

# METEOROLOGICAL BULLETIN

(Quarterly)

·≻~>>COOO>

#### CONTENTS

#### Articles

The Circulation Features for "Dry" Mei-Yu in
Taiwan Area Joe. C. K. Chen Chih-Shiang Liaw (1)
An Investigation of the Relationship between Rainfall
Persistence and Agricultural Machinery Efficiency
in Various Regions of Taiwan Chiu, Yung-ho Tseng, Wen-ping (15) Hsu, Chun-ming Lee, Nan-wen

#### Repont

A Report on the Typhoon Norris in 1980 ..... Li-Yu Jen Wen-Kuei Hwah (27)

64 Park Road, Taipei Taiwan, Republic of China **June 1981** 

### 氟氯學報

季 刋

第二十七卷 第三、四期

目 次

論著

<b>頻譜風浪預報模式</b> 李汴軍	( :	L	)
氣流線自動分析之研究胡仲英	(	8	)
工程上應考慮的地震問題徐明同	(1	.7	)
臺北盆地二氧化硫濃度之評估	(4	1	)

.

		412 2			in the second se	200000000 1	runn
		浰	<b>)</b>	家	3	tr.	
				季	刋		
		第二	ートン	- 卷	第三、	四期	·
	主	編	者	中央乡	<b>氣象</b> 局氣	象學報社	O
	地		址	臺北市	市公園路:	六十四號	战
				電話:	±t−Ξ	一八一(十線)	《請交換
	發	行	Х	吳	宗	堯	ম্ব ফ
	社		長	吳	宗	荛	人
				電話:	(三一一)	〇八四〇	
	fП	刷	者	文 李	もり、	公司	O
	地		址	臺北	市三水	街七號	
				電話:	三〇六日		
				HEARIG .	三〇六・		
Ē	⊨ 華	• 民	國	七 十	年 十二	月 出 版	

### 頻譜風浪預報模式 Spectral Wind-Wave Prediction Model

#### 李汴軍

#### Beng-Chun Lee

#### ARSTRACT

In the wave growth model discussed in this paper, there are five energy transfer processes being considered, namely, linear and exponential wave growths with time, wave breaking, frictional dissipation and the effect of opposing winds. The coefficient of the exponential growth, according to Lee (1981), is  $\beta=0.1075$  u* f/c. The device designed for calculating the wave propagation by using finite difference scheme and jump technique rules out the problem of instability.

The wave model consists of three parameters, wind direction, wind speed and frictional velocity, which are obtained from the log-wind profile and the correction term of the atmospheric stability. The forecasted wave heights by the model are in a reasonable agreement to the wave heights actually observed at Yehliu and Pitouchiao in conclusion.

#### 要

摘

本文在波浪成長模式中,考慮五種能量轉移過程,線性與指數隨時間之成長,碎波,內 摩擦及逆風反應,其中指數成長係數根據 Lee (1981) 之經驗式 β=0.1075 u*f/c 。計算 波能傳播時,引用差分法及跳躍法併用,沒有計算不穩定之問題。

假定對數剖面風之垂直分佈,加上大氣穩定度之修正項,所得到之風向,風速及摩擦速 度,代入上述波浪模式中,所預測之波高經與鼻頭角及野柳外海實際測到波高來比較結果顯 示,相當合理。

#### 一、前 冒

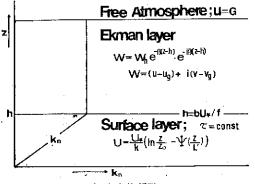
近年來波浪理論之研究因計算機之快速發展, 不少專家與學者提出不同數值波浪模式,例如

**FGelci**與 Devillaz (1970); **Tick**與 Baer (1966)」(Isozaki 與 Uji 1973); Barnett ( 1968); Ewing (1971); Isozaki 與 Uji (1973) )。這些模式均根據能量平衡方程式而來,基於不 同之物理性質之假設,所以源函數有許多型式,而 Dexter (1974) 指出,不同模式與源函數所得到 預測結果基為接近。

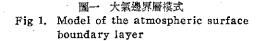
然而將波浪模式應用到正常即時預測工作時必 需要知道任何時間,任何高度之海面風之資料,以 往海面風是地轉風乘上一個係數換算而來,而此係 數是海水溫度和空氣溫度之函數,沒有考慮大氣穩 定度對海面風剖面之影響。 Cardone (1969) 將 大氣穩定度引入,提出二層斜壓風場模式,而使得 波浪模式所計算出來波浪場更符合實際海面狀況。

本文由風場計算出來之參數:風向、風速及摩 擦速度,代入波浪模式中所預測之波高與鋒面過境 期間,在鼻頭角與野柳兩測波站所實測之資料作一 比較,顯示預測趨勢相當合理。

#### 二、海面風數值模式


由於受到地表層構造,大氣穩定度等等因素, 地表風呈紊流現象,而實際海面也具有比特性,同

- 1 -


- 2 -

時海面產生波浪,會擾亂空氣之運動,所以海面風 之構造比地表風更複雜。

近年來,由於實驗之結果,顯示海面風之垂直 分佈近似於對數分佈 (Phillips, 1966),因此將 大氣邊界層所得到之理論可以應用到海面上,根據 此觀念 Cardone (1969) 提出二層斜壓海面風場 模式,如圖(1)。







在地表層內,風應力(r)是常數,渦度交換係數 (km)是高度之函數,忽略科氏力(f)參數效應, 所以地表層內不考慮風向隨高度之變化,則地表層 內之剖面可表為

$$U_{z} = \frac{u_{*}}{k} \left( \ell_{n} \frac{Z}{Z_{0}} - \Psi(\frac{Z}{L'}) \right)$$
(1)

式中  $u_z$  是高度 Z 之風速,  $u_*$  是摩擦速度, k 是 Kärman 常數, Z₀ 是粗糙度参数, L' 是穩 定度長度,  $\Psi(\frac{Z}{L'})$  是大氣穩定度修正項。

根據 Cardone (1969) 粗糙度参數可寫為

$$Z_0 = \frac{0.04 \times 10^{-3}}{u_*} + 4.28 \times 10^{-3} u_*^2 -$$

 $4.43 \times 10^{-4}$  (2)

而大氣穩定度修正項可参照 Paulson (Cardone, 1969) 及 KEPYS 經驗式展開為泰洛級數型而求 之,

在艾克曼層渦度交換係數是常數,風應力隨高 度遞減,考慮科氏力參數效應,所以風向隨高度有 變化,由艾克曼解可以知道風之垂直分佈

$$W = W_{h} e^{-\beta(z-h)} e^{-\beta(z-h)}$$
(3)  
式中  $\beta = (f/2km)^{\frac{1}{2}}, W_{h}$ 是高度 h 之W 值, 而 W  
可定義為

$$W = (u - u_g) + i(v - v_g)$$
(4)

式中 u. v 是U之分量, $u_s$  v_s是地轉風G之分量

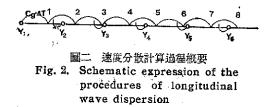
利用地表層及艾克曼層之相配解可以計算出摩 擦速度及風之吹入角(ダ),首先定義地表層 h之 高度(Blackadar 與 Tennekes, 1968)

$$h = b - \frac{u_*}{f} = 0.01 - \frac{u_*}{f}$$
 (5)

其邊界條件如下:

$$\begin{array}{ccc} Z = Z_0 & \mathbf{U} = \mathbf{0} \\ Z = \infty & \mathbf{U} = \mathbf{G} \\ Z = \mathbf{h}, & \mathbf{U}, \ \frac{\partial \mathbf{U}}{\partial \mathbf{Z}^{-}} \tau \\ integral $

則式(1)可以完全表示地表層內任一高度之風場值


#### 三、浪波數值模式

根據能量平衡方程式,可以將波浪之成長,傳播和減衰用下式表示(Barnett, 1968)

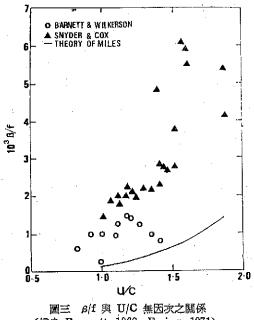
$$\frac{\partial}{\partial t} S(f, \theta, \mathbf{x}, t) = -C_{g}(f) \nabla S(f, \theta, \mathbf{x}, t) + F(f, \theta, \mathbf{x}, t)$$
(7)

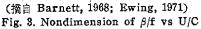
式中S是二維能譜為頻率f,傳播方向 $\theta$ ,位置X,和時間 t之函數, $C_s$ 是頻率之羣波速度,F是源函數,

波能傳播採用差分法及 Pierson's 跳躍法, 包括方向擴散及速度分散,所謂方向擴散是波能  $S(f_i, \theta_j, x, t) 以 (\theta_i + \Delta \theta) ~ (\theta_j - \Delta \theta) 扇形面積$ 傳播其能量,而速度分散是在傳播方向上,等間隔 $之連續點取一很小距離 <math>\Delta Y$ ,來決定波能是否傳到 前進網格點上,如圖(2),知道時間 1,4,7 波能留 在原點,時間 3,6 波能傳到前進點,時間 2,5.8 部份波能留在原點,部份波傳到前進點。(Uji 與 Isozaki, 1972)



源函數項有:線性成長指數成長,碎波內摩擦
 與逆風反應 (Isozaki 與 Uji, 1973)。
 (→線性成長項: α
 根據 Inoue (1967) 可寫為


$$\alpha (f, u) = \int -\frac{\frac{1}{2}}{\frac{2}{2}} \frac{9.84 \times 10^{-15} \times \omega^{5,25} \times u^{2,25}}{(\frac{1}{4} - ((\frac{\omega}{u})^2 + (k \sin \theta)^2)(\frac{\omega}{9} - (\frac{\omega}{u})^{2.5} + (k \sin \theta - \frac{\omega}{u})^2)} d\theta$$
(8)


式中U是海面 19.5 米高之風速, $\mathbf{k} = \frac{\omega^2}{9.8}$ , $\omega$ 是角

頻率,

(二)指數成長項: 6

根據 Snyder 與 Cox (1966); Barnett 與 Wilkerson (1967); Schule et al (1971); DeLeonibus 與 Simpson (1972) 知道 Miles (1957) 指數成長理論値太小圖(3),一般採用經驗 式。





根據 Lee (1981)

 $\beta$  (f, u*)=0.1075 $\frac{u*}{c}$  f (9)

式中C是波相位速度,u* 是由風楊模式計算出來。

闫碎 波

利用 Pierson 與 Moskowitz (1964) 之 完全成熟發展之能譜來限制波浪之成長 , 不考慮 Overshoot與Undershoot現象,因此現象對整個 波浪場總能量影響甚少,可略不計因此以一(S S∞)³ 乘上線性和指數成長項為碎波之計算而

$$\mathbf{S}_{\infty}(\omega) = \frac{\alpha g^2}{\omega^5} e^{-\beta \left(\frac{g}{u_{\omega}}\right)^4} \tag{10}$$

式中  $\alpha = 0.83 \times 10^{-3} \beta = 0.74$ 

四內摩擦效應與逆風反應

波浪在靜止海面傳播時,長週期成份波損失比 短週期成份波較少,Hasselmann (1963)認為這 種長波與短波相互作用後短波之能量移到長波之結 果,而定性來看,波能在傳播過程中遇到逆風時, 會產生逆反應,但為簡化起見,內摩擦及逆風反應 分別以下面二式表示

$$\mathbf{F}_{\mathbf{p}} = -\mathbf{D}_{\mathbf{i}} \cdot \mathbf{f}^* \cdot \mathbf{S} \tag{11}$$

$$\mathbf{F}_{\mathbf{w}} = -\left(\beta + \mathbf{D}_2 \cdot \mathbf{f}^4\right) \mathbf{S} \tag{12}$$

由以上知道整個基本式可寫為

$$\frac{\partial \mathbf{S}}{\partial \mathbf{t}} = -\mathbf{C}_{s} \cdot \nabla \mathbf{S} + (\alpha + \beta \cdot \mathbf{S}) [1-()]$$

$$\frac{\mathbf{S}}{\mathbf{S}_{\infty}}^{2}]\Gamma(\theta) \mathbf{S} \leq \mathbf{S}_{\infty}, \ \theta < 90^{\circ}$$

$$\frac{\partial \mathbf{S}}{\partial \mathbf{t}} = -\mathbf{C}_{s} \cdot \nabla \mathbf{S} - \mathbf{D}_{1} \cdot \mathbf{f}^{4} \cdot \mathbf{S} \cdot \mathbf{S} > \mathbf{S}_{\infty},$$

$$\frac{\partial \langle 90^{\circ}}{\partial \mathbf{t}} = -\mathbf{C}_{s} \nabla \cdot \mathbf{S} - [\beta \Gamma(\theta) + \mathbf{D}_{s} \cdot \mathbf{f}^{4}]$$

$$\mathbf{S}, \ \theta > 90^{\circ}$$
(13)

式中 $\theta$ 是風向和波浪傳播方向之夾角, $\Gamma(\theta)$ 是方向分佈函數 (Cos² $\theta$ ), D₁, D₂ 是能量減衰係數, 根據 Lee (1981) D₁=256, D₂=1.

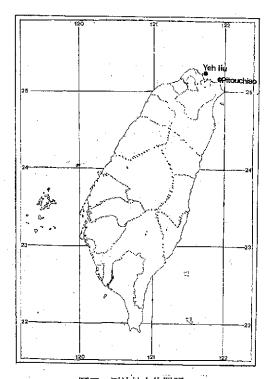
將式133利用差分法,積分,則可計算出每一網 格點在任一時間之波浪值,而其邊界條件在岸邊時

$$S = 0$$
 (14)

而在大洋時

$$\frac{\partial S}{\partial n} = 0 \tag{15}$$

式中n係垂直邊界,而其初始條件假定靜海面則需 計算4天左右消除這種人爲初始條件


當每一點能譜值得到後再利用

$$H_{\frac{1}{2}} = 2.83 \, \text{J}/\text{E}$$

换算為指示波高然後取最大頻率能譜值倒數為其指 示週期

#### 四、計算結果與討論

今以二個鋒面過境所產生高波與鼻頭角與野柳 二測波站圖(4)實測作比較



圖四 測波站之位置圖 Fig. 4. Location of the coastal wave observing station

個案一:鼻頭角民國70年1日24日~26日 個案二:野柳民國70年2月24日~25日

整個海域劃為 10×10 網絡點每網格點距離為 150 公里圖(5),計算時間間距2小時,則每六小時 風場資料計算三次其間假定為常數。

將能譜分割為22個頻率帶  $(0.04H_z \sim 0.25H_z)$ ,每一頻率帶有16個傳播方向 (是氣象坐標相同),而其頻譜寬度分别為 0.01 H_z 和 22.5°所以上節中  $\Delta \theta = 11.25^\circ$ 

然後讀取每一網格點氣壓值,空氣溫度,海水 溫度(取月平均海水溫度),利用風場模式,計算 出風向、風速,摩擦速度代入波浪模式中,其預測 値與實例值如圖(6)與圖(7),從比二圖可看出幾個特 徵:

(-)鋒面過境之際,預測波高偏低,而當實測波 高較陡時,則偏較低。

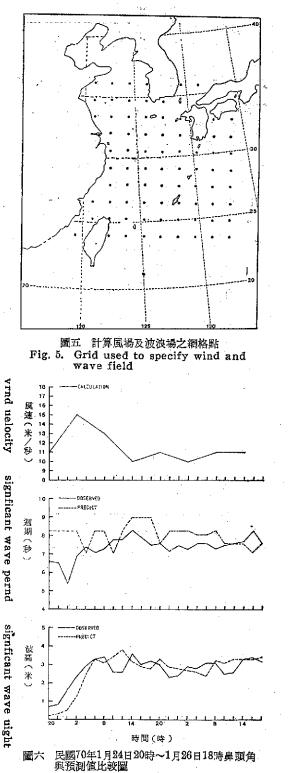
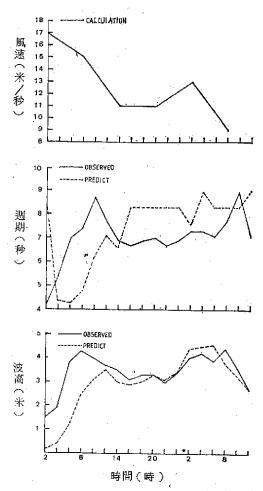




Fig. 6. Comparison of predicted signifcant wave height and period (dash line )with observation (continuous line ) at "Pitouchiao" during 24-26, January 1981

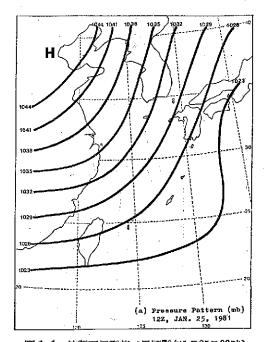


- 圖七 民國70年2月24日2時~25日12時野柳實測 值預測值比較
- Fig. 7. Comparison of predicted significant wave height and period (dash line) with observation (continuous line) at "Yehliu" during 24-25, Februany, 1981

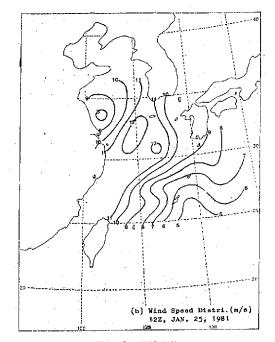
(二)平穩狀態時, 實測波高與預測波高吻合。
(三)就整個預測趨勢來看相當一致。

造成鋒面過境之際,預測值偏低之原因有:

 1.風場値在每六小時內假設為常數,而鋒面過 境之時間均非在氣象觀測時測到。

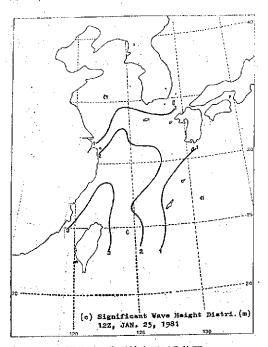

2.當鋒面接近時,鋒面前面與線使氣流呈亂流
 性質,而鋒面後面强風軸,則更易使波浪成長。

本文不僅能作單點波浪預報,同時也能作整個 海域之風場分析圖及等波高圖,圖(8)。


五、論 結

在能量平衡方程式中,考慮五種過程:緣性與

指數隨時間成長,碎波內摩擦及逆風反應,所需要 參數,直接由二層斜壓風場模式直接計算出來,此 模式不僅能計算風之垂直構造,而且也能計算摩擦




III八-1 綜觀天氣型態 (民國70年1月25日20時) Fig. 8-1. Synoptic pressure pattern at 12Z, January, 25, 1981



圖八-2 風速分佈圖 Fig. 8-2. Distribution of calculated wind field at 12 Z, January, 25, 1981





圖八-3 指示波高預測分佈圖 Fig. 8-8. Distribution of predicted significant wave height at 12Z, January, 25, 1981.

速度,由整個計算出來之預測波高趨勢來看相當---致。

由二個實際推算例子來看在鋒面過後平穩狀態 預測値和實測値相當吻合,而在鋒面過境之際,模 式無法處理,因波浪成長係數不適合鋒面之氣象狀 況。

本文不但能預測單點之波浪,同時也可以預測 整個海面風速分析及波高分佈圖,此可提供中央氣 象局及海上施工單位之參考。

#### 誌 謝

本文承吾師梁乃匡博士悉心指導,特此申謝同 時要感謝中央氣象局在各方面支持。

#### **REFERENCES CITED**

- Barnett, T. P. and J. C. Wilkerson, 1967. On the generation of wind waves as inferred from airborne measurements of fetch-limited spectra. J. Mar. Res., 25, 292-328.
- 2. Barnett, T. P. 1968. On the generation, dissipation, and predication

of ocean wind waves. J. Geophy. Res., 73, 513-529.

- Blackadar, A. K., and H. Tennekes, 1968. Asymptotic similarity in neutral barotropic boundary layer. J. Atoms. Sci., 25, 1015-1020.
- 4. Cardone, V. J., 1969. Specification of the wind distribution in the marine boundary layer for wave forecasting. TR-69-1, Dept. Meteorol. and Oceanogr., NEW YORK Univ., 131P.
- De Leonibus, P. S. and L. S. Simpson, 1972. Case study of durationimited wave spectra observed at an open ocean tower. J. Geophy. Res., 77, 4555-4569.
- Dexter, P. E., 1974. Test of some programmed numerical wave forecast model. J. Phy. Oceanogr., 4, 635-644.
- Ewing, J. A., 1971. A numerical wave prediction method for the North Atlantic Ocean. Deut. Hydrogr. Zeit., 24, 241-261.
- Hasselmann, K., 1963. On the nonlinear energy transfer in a gravity wave spectrum (3). J. Fluid Mech., 15, 385-398.
- Inoue, T., 1967. On the growth of the spectrum of a wind generated sea according to a modified Miles-Phillips mechanism and its application to wave forecasting. Geophy. Sci. Lab. Report No. TR67-5, NEW YORK Univ., 74p.
- Isozaki, I. and T. Uji, 1973. Numerical predication of ocean wind waves. Pap. Met. Geophy., 24, 207-231.
- Lee, B. C., 1982. Numerical prediction model of ocean wind waves. M. S. thesis of Institute of Ocean-

ography, National Taiwan University

- Miles, J. W., 1957. On the generation of surface waves by shear flows. J. Fluid Mech., 3, 185-204.
- Pierson, W. J., G. Neumann, and R. W. James. 1955. Practical methods for observing and forecasting ocean waves by means of wave spectra and statistics. H. O. Pub. 603. 1809., U. S. Navy Hydrographic Office, Washington, D. C.
- Philips. O. M., 1966. The dynamics of the upper Ocean. Cambredge Univ. Press, 261P.
- Panofsky, H. A., 1963. Determinations of stress from wind and temperature measurements. Quart. J. Roy. Met. Soc., 88, 85-94.
- 16. Pierson, W. J. and L. I. Moskowitz,

1964. proposed spectral form for fully developed seas based on the similarity theory of S. A. Kitaigorodskii, J. Geophys. Res., 69, 5181-5190.

- Snyder, R. L. and C. S. Cox, 1966. A field study of the wind generation of ocean waves. J. Mar. Res., 24, 141-178.
- Schule, J. J., L. S. Simpson, and P. S. De Leonibus, 1971. A study of fetch-limited wave spectra with an airborne laser. J. Geophy. Res. 76, 4160-4171.
- Uji, T. and I. Isozaki, 1972. The calculation of wave propagation in the numerical prediction of ocean waves. Pap. Met. Geophy., 23, 347-359.

氣象學報第二十七卷第三、四期(70年9、12月)

## 氣流線自動分析之研究

Study on Automated Streamline Analysis

胡仲英

#### Chung-Ying Hu

#### ABSTRACT

A technique for automated streamline analysis is described. The input data are directly received and processed by ADAPS (Automatic Data Acquisition and Processing System) in Central Weather Bureau. The wind observations are fitted onto grid system by a simple method called successive correction method. The corrections are computed from a comparison of the observation data with the interpolated value of the guess field at those stations, and then added to the initial guess field. Utilizing grid-point values of wind directions, or u and v components of the wind, the described technique produces streamlines which are tangent to the instantaneous wind direction and are independent of speed. The computer program has been successfully applied to real-time upper-air sounding data and numerical model output.

#### 一、前 営

氣流線分析之目的,乃利用觀測的地面或等壓 面上的風向與風速,繪出連續的風場及氣流型態, 來分析空間任何一點之水平風向和風速,並由氣流 之型態計算空氣幅散及輻合量。

近年來,由於大氣環流理論的蓬勃發展,氣象 擊者對於中緯废與熱帶地區能量交換引發極大興趣 ,更因為氣象衞星的觀測,提供熱帶地區廣大洋面 的觀測資料,促使熱帶氣象的研究工作方興未交。 衆所週知,熱帶區域等壓面的坡度頗小,單憑氣壓 一高度資料實不能作出一可信賴之分析,探空資. 料之可信程度,尚未令人滿意,且測站分佈稀疏, 如採用等高線分析技巧,難免會造成重大錯誤。

目前氣流線分析為熱帶天氣分析最適宜的方法 之一,其理由如下:

 1.地面風的觀測儀器由於使用電子儀器,使準 確性大為增加,高空風觀測採用飛機沿航路觀測及 無線電探空(Rawinsonde)等,能在任何天候 下舉行觀測,風之觀測相當正確,據研究統計500 毫巴風速之觀測誤差為 2 m/sec, 300 毫巴風速之 觀測誤差為 5 m/sec (Kurihara, 1961)。同時, 大氣層中風的報告亦遠較氣壓報告為多。

2.熱帶地區風場與天氣場的關係遠較氣壓場更 第一次的,風隨時間之變化及其梯度均遠勝於氣壓, 且不為日變化所掩蔽。

3.目前赤道上空配置一系列的地球同步衛星, 可以連續觀測廣大熱帶洋面及不同高度之風場,即 時供氣流線分析使用。

作者鑑於氣流線分析日趨重要,特分段介紹風 場客觀分析,氣流線自動分析原理及基本氣流線型 式,並以實例說明氣流線自動分析之實際應用,俾 期望對天氣分析與預報能有所貢獻。

#### 二、風場之客觀分析

吾人首先需將分佈不規則的觀測站所測得的風 場內挿到等間距的網格點上,許多論文曾討論不同 的客觀分析方法,本文介紹理論簡單,計算迅速的 連續修正法(Successive Correction Method) ,此法最早由 Cressman (1959) 提出,而由

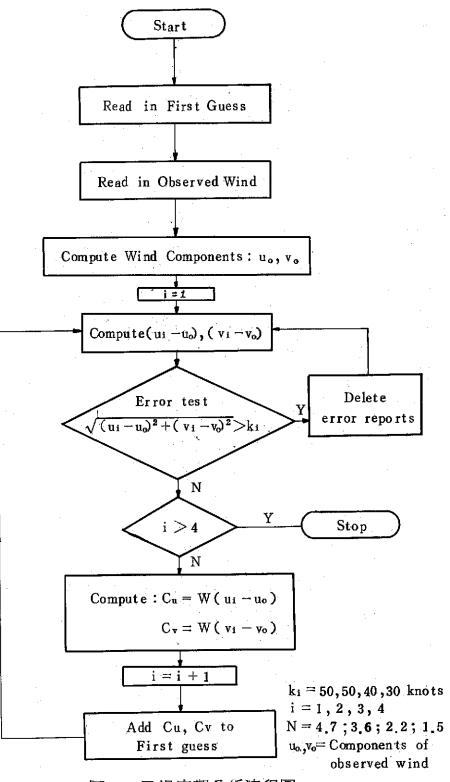



圖 1. 風場客觀分析流程圖

Fig. 1. Flow diagram of the objective analysis for wind field.

- 9 --

Bedient 與 Vederman (1964) 引用到熱帶地 區風場的客觀分析。首先吾人利用前一時刻的網格 點分析值當作初始猜測值 (First guess value) ,例如吾人欲進行 1200 GMT 的風場分析,則取 當天 0000 GMT 的風場分析結果當作初始猜測值 ,然後利用 1200 GMT 的觀測風場來連續的修正 網格點上的猜測值,修正公式如下:

$$C_u = -W(u_1 - u_o) \tag{1}$$

$$C_v = -W(v_i - v_o)$$

此式內 C 為網格點修正量, u。與 v。為觀測風場 的分量,  $u_i$  與  $v_i$  為觀測站第 i 次掃描的風分量內 挿值, W 係權重係數 (Weighting factor) 定 義為:

$$W = \frac{N^2 - d^2}{N^2 + d^2}$$
(2)

此處 d 為網格點與觀測站間之距離, N 為掃描半徑,第一次掃描時取 N 為 4.7 個網格間距,如此可 將大幅度的環流現象修正到網格點的初始猜測值, 然後逐次減小掃描半徑, 至第四次掃描時取 N 為 1.5 個網格,如此可將較小幅度的波動修正到網格 點上。此分析法並可約略地檢查觀測誤差,如第一 次掃描時觀測值與內挿值之差異絕對值超過 50 浬 /時,則該觀測值被視為錯誤而予剔除。第二、三 、四次掃描的誤差判定值分別為 50 浬/時,40 浬 /時及 30 浬/時。風場的客觀分析流裡圖參見圖 1。

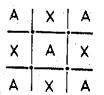
#### 三、氣流線之自動分析

本節介紹一種利用電子計算機自動分析繪製氣 流線的方法。此法係利用由風場客觀分析得到網格 點上的風速分量 u, v 值, 繪出與風速無關而切於 瞬間風向之線 (Saucier, 1955)。 這種方法曾經 成功地應用在高空探空資料、地面逐時觀測和數値 模式輸出資料的分析 (Whittaker, 1977),以下 分段說明此氣流線自動分析法之程序:

1.格點資料

由風場的客觀分析,吾人得到網格點上風速分量u,v,在進行氣流線自動分析時,首先將風速分量常態化 (Normalize) 為所需的位移大小。在所有格點上計算位移分量,此位移分量決定所繪的流線軌跡為:

$$D_{x} = (u/V)*D$$
(3)  
$$D_{y} = (v/V)*D$$


式中, D, 與 D, 為常態化後的位移分量, u 和 V 為相對於格點的風速分量, V 為風速, D 為待 定的位移大小。

本文定義「格箱」為四個鄰近格點所圍成的區 域,每一個格箱均附加兩個「旗子」(Flags),第 一個旗子指示是否已有流線通過此格箱,第二個旗 子指示是否已有方向箭頭(Directional Arrow) 在此格箱出現。後面將討論如何適當地使用這些旗 子,以免流線和方向箭頭過於擁擠。

2.流線之建立

(1) 開始繪流線

由經驗得知,若格箱內不曾有其他流線通過, 則由此格箱內繪出的流線較為悅目。吾人以旗子設 定最初始的可利用格箱如圖2所示,採用跳格式設 計可以減少開始繪流線之搜尋時間。同時,搜尋可 利用格箱的先後次序是無關緊要的。



 [[] 2. ]]]點代表網格點,格箱 A 為洗線開始 繪製之可利用格箱,格箱×則否。
 Fig. 2. Grid system

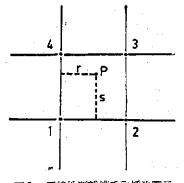
(2) 繪圖

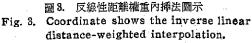
一旦找到新流線的起點,有兩個繪圖方向:第 一個向前,使用如公式(3)所計算的位移分量,然後 向後,使用其互補量(Complements),每一條 流線是把一連串的點以勻滑曲線連接起來而繪成的 。在包含流線現在位置(Current Position)所 在格箱的四個網絡點,利用位移分量的反線性距 離權重內挿公式(Inverse linear Distance-Weighted Interpolation):

$$D_{P} = \sum_{i=1}^{4} W_{i} D_{i} / \sum_{i=1}^{4} W_{i}$$

$$W_{1} = 1 / (s+r)$$

$$W_{2} = 1 / [s+(1-r)]$$


$$W_{3} = 1 [(1-s)+(1-r)]$$


$$W_{4} = 1 / [(1-s)+r]$$

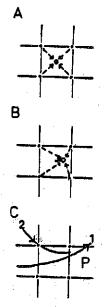
式中  $W_1 \cong W_4$  係鄰近4 個網格點的距離權重, r, s 為流線現在位置 p 點在該格箱內之座標(参 見圖3),  $D_P$  係流線現在位置的位移分量,利用 (4)式可將位移分量之値內挿到流線現在位置,參見 圖4 (A), 然後將內挿値加到流線現在位置座標

- 11 -

上,計算出新的流線現在位置。同時在圖上繪出一 條線平行於風的吹向,參見圖4(B),若流線移入 一新的格箱內,此格箱就被旗子所標示,此後不會 再有流線由此格箱開始。






當所給流線進入一個不含有方向箭頭的格箱內 時,給完流線的位移後就加繪方向箭頭,方向箭頭 的大小可以視圖形尺寸予以調整,就像開始繪流線 的預先設定條件,只有每一個第二格子是為箭頭所 預先設定的(參見圖2)。最後,利用當時內挿位 移值,計算線段的斜率繪出箭頭。

至此,已計算出所有相對於格點的座標,再使 用適當的轉換公式,將格點座標(行與列)轉換為 繪圖機的座標系統來顯示分析結果,此繪圖機可以 是平板式(flat-bed type)或滾筒式(Drum Type)繪圖機,也可以是陰極射線終端繪圖機 (Graphic CRT)。當座標系統已轉換爲繪圖顯 示系統後,就調整位移大小,使位移不會太大,如 此可避免有不勻滑的折線段,也不致太小,以確保 每次叠代皆有移動,不致過於耗費計算機時間,作 者選取 D 值等於網格點間距的十分之一。

(3) 終止繪流線

終止繪流線所遵循的規則如下:

- a.若流線超過網格系統的側向邊界時,終止繪該 流線。
- b.若計算機經過 50 次或事先定好的一定次數的 叠代後,仍無法顯示流線明顯位移,則終止繪 該流線。
- c.檢查在滙流或分流區域,流線是否過於擁擠, 並避免流線沿一羣格箱後繞回原來的流線上。 為進行此項檢查,每次流線進入新的格箱,就 將流線座標置於一圓形表上(Circular,List)



- 圈 4. (A)由四個網格點風速分量內挿至現在位置, 圆 圈顯示氣流線由網格中心位置開始。
  - (B)將內挿位移分量加至現在位置卽得流線新的 現在位置,此內挿過程一直重覆進行。
  - (C)繪畢流線1後,開始繪流線2,流線2在格 箱P時太過於接近流線1,因此終止繪製流 線2。
- Fig. 4. Step-by-step diagram of streamline generation

, 此表含 500 至 1000 個點,表上的新座標取代舊 座標可重覆使用。當流線進入一個新的格箱,其座 標就與表上其他座標比較,如發現目前流線太密集 (通常取 0.05吋),則停止繪此流線,此過程示於 圖 4 (c)。每當進入一個新的格箱均要搜尋此圓形 表,此過程所耗的計算機時間幾乎和其餘過程之總 和相同。

氣流線自動分析流程圖參見圖 5。

(4) 等風速線分析

等風速線 (Isotach) 為風速相同點之連線。 在熱帶區域,等風速線通常採用每5 浬/時為間隔 ,若分析區域位於較高緯度之噴射氣流附近,或熱 帶風暴來臨時,則每5 浬/時之間隔可能使等風速 線太密集,可改用每 10 浬/時為間隔。

繪製等風速線之原理與繪製等壓線,等溫線之 「無向量」分析相同(徐與胡,1976),唯等風速 線可採用虛線或他色線條,以示與氣流線區別。

四、渦旋度(Vorticity)與輻散量 (Divergence)之計算

吾人已計算得每個網格點上的速度分量u, v,



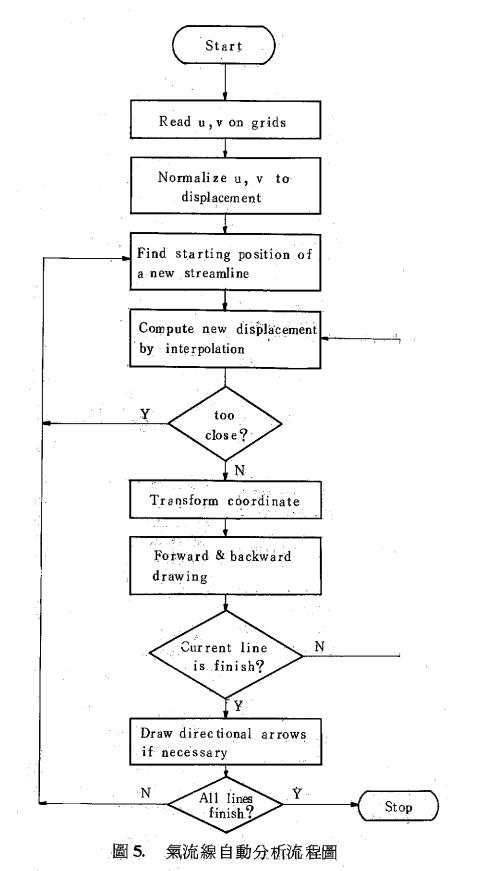
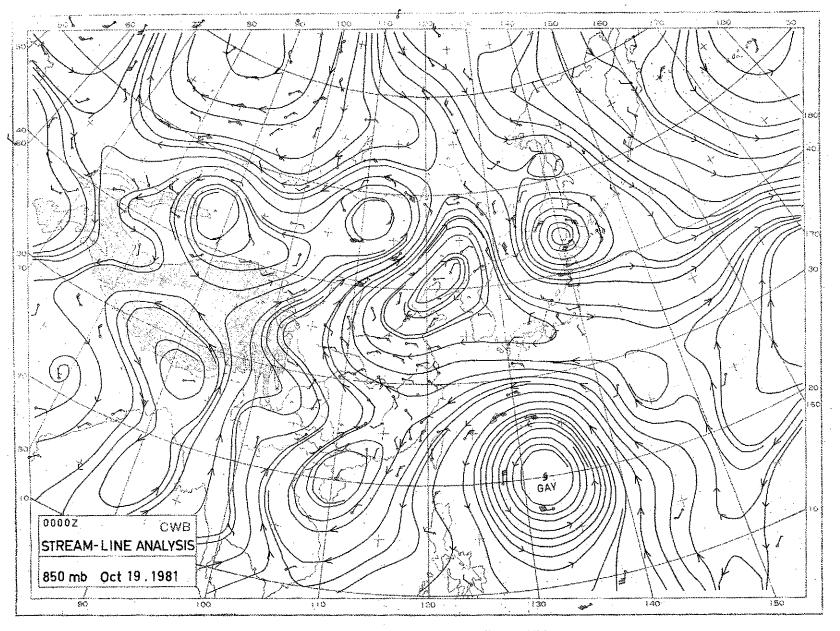
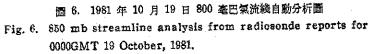





Fig. 5. Flow diagram for automated streamline analysis





依據渦旋度(ई)和輻散量(δ)定義:

$$\begin{aligned} \xi &= \vec{k} \cdot \nabla \times \vec{v} \\ &= \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \\ &= \frac{m}{2d} \left[ (v_{1+i,j} - v_{1-i,j} + u_{1,j-1} - u_{1,j+1}) \right] (6) \\ \delta &= \nabla \vec{v} \\ &= \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \\ &= \frac{m}{2d} \left[ (u_{1+1,j} - u_{1-1,j} + v_{1,j+1} - v_{1,j-1}) \right] \end{aligned}$$

可分别計算水平方向或等壓面上每一網絡點氣流的 渦旋度及輻散量。其中 m 為地圖投影因子, 熱 帶地區氣流線分析圖一般均使用麥卡 特 圖 柱投影 (Mercator Cylindrical Projection), 中緯 度地區則採用藍伯特正角 圖 維 投 影 (Lambert Conformal Conic Projection)。

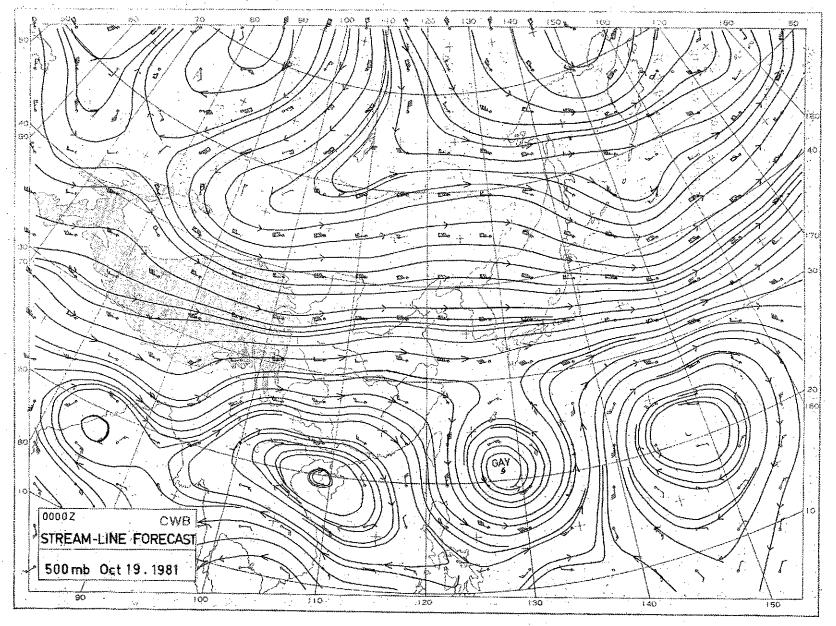
#### 五、氣流線之基本型式

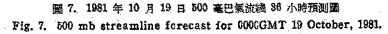
氣流線能代表大氣層的運動特性(Kinematic Properties),預報人員宜熟悉一般氣流線圖中 的基本型式及其特性。目前確定的基本型式計有: 熱帶波動(Tropical Wave),奇異點(Singular Point),漸近線,正切點,風切線以及等風 速線型等,每一基本型式及其伴隨特殊的天氣現象 ,讀者可參見熱帶氣象學(1976),本文不作重複 介紹。

#### 六、實例討論

利用上述氣流線自動分析技巧,所繪製的氣流 線圖實例參見圖6與圖7。圖6係民國七十年十月 十九日 850 毫巴高空氣流分析圖,資料來源經由中 央氣象局電子計算機中心「氣象資料自動蒐集及處 理系統」(ADAPS, Automatic Data Acquisition and Processing System,胡,1979), 利用 GA 小型電子計算機的即時處理系統每天二 十四小時自動直接蒐集東亞及北半球地區地面、船 舶及高空等各類氣象電報,經過解碼、值錯、分類 等處理後建立即時氣象資料庫,吾人由即時資料庫 中取得高空 850 毫巴的風速風向觀測值,輸入風場 客觀分析程式,該程式將觀測的風場內挿至網格點 上,網格系統係採用中央氣象局標準網格系統;以 東經 120 度及北緯 30 度爲參考點,X 方向取 38 個 網格點, Y 方向取 28 個網格點,網格間距為 240 公里,網格系統涵蓋東亞及西太平洋。

由風場客觀分析程式計算的網格點上風速分量 ,再輸入至氣流線自動分析程式,最後由 Calcomp 960 大型繪圖機將氣流線繪出。由圖 5 顯示 ,中度颱風蓋依(GAY)呈氣旋型渦流 (Cyclonic Vortex) 中心位置在北緯 20 度, 東經 133 度附近 ,係氣流場中典型之奇異點 (Singular Points) ,另一氣旋型渦流位於日本北海道東岸,此二氣旋 型渦流環流結構均基對稱,且風速均甚强。此外, 在中國大陸東經 87 度,北緯 45 度及東經 112 度, 北緯 47 度附近也各有一個氣旋型渦流。在山東半 島及海南島附近則各有一個反氣旋型渦流(Anti-Cyclonic Vortex), 其形狀較不對稱,且風速 均較弱。此分析圖上鞍形場 (Cols) 甚多, 較顯 著者係位於中國華南 (115°E, 26°N), 外蒙古 (105°E, 45°N) 及青康藏高原 (90°E, 35°N) 等 處,其特徵為一部分氣流趨近該區,一部分氣流遠 離該區,鞍形場附近風向變化大,惟風速微弱。在 中國東北 (115°E, 40°N) 附近有一氣流漸近線存 在,西南方向氣流在此區幅合,附近的氣流線均沿 比線互相趨近,此區所呈現之風速亦較大。菲律賓


(120°E, 18°N)附近則有一不基明顯的輻散區存 在,鄰近的氣流線均在此區呈散開,此區的風速則 較弱。


圈7係民國七十年十月十九日 00Z,由數值模 式預測 500 毫巴 36 小時後網格點之風場,輸入氣 流線分析程式所得之氣流線預測圖。中央氣象局現 行作業採用的數值模式係相當正壓預報模式,其預 報公式為(蔡與胡,1975):

$$\nabla^{2} \frac{\partial z}{\partial t} + \mathbf{J}(z, \xi + \mathbf{f}) = \frac{\mathbf{A}_{o} \mathbf{f}_{o}^{2}}{\mathbf{R} \mathbf{T}_{o}} [\frac{\partial z}{\partial t} - \frac{\mathbf{g}}{\mathbf{f}_{o}} \mathbf{J}(z, z_{s})]$$
(7)

其中 T。為地面溫度, A。為地面風速與垂直平 均風之比, Z。為地形高度, Z 為等壓面高度, (7)式只適用於一特定等壓面 P* (Starred Level) ,此特定等壓面的定義為 A (P*) = A²(P) 時的等 壓面。一般用東西方向風速求取 A (P) 值,東亞 區域冬天的平均值 P*~450 毫巴, 故吾人由(7)式 預報 500 毫巴的等高線變化。然後,將網格點的高 度預測值代入地轉風假設:

$$\mathbf{u} = -\frac{\mathbf{g}}{\mathbf{f}} \quad \frac{\partial \mathbf{z}}{\partial \mathbf{y}} \tag{8}$$
$$\mathbf{v} = -\frac{\mathbf{g}}{\mathbf{f}} \quad \frac{\partial \mathbf{z}}{\partial \mathbf{x}}$$





15 -

可計算出各網格點的預測風速分量。(前項地轉風 假設引用於低緯度區並不適切,如日後中央氣象局 改用初始方程式預報模式(P-E Model),則可直 接得到網格點上的風速分量預測值。)

由圖7顯示氣流線與網格點風向非常吻合, 蓋 依颱風所呈現之氣旋型渦流三十六小時預測中心位 置在 21.5°N, 129.0°E, 渦旋相當對稱且風速甚强 , 20°N 緯度圈由西向東另有三個反氣旋渦流分別 位於 147°E, 109°E 及 85°E 附近, 均呈橢圓形 且風速較弱。北緯 30 度至 40 度係西風氣流,風速 甚强。 位於 75°E, 45°N 處有一明顯的鞍形場存 在,附近風速也較弱。

850 毫巴高空氣流線分析連同客觀風場分析需 計算機時間及繪圖時間約為 12 分鐘,繪製 500 毫 巴氣流線預測圖則只需約 8 分鐘(不包括數值模式 計算所需時間),而通常由一熟練之預報員繪製同 一氣流線分析圖則至少需時 40 分鐘以上,故引用 此法對人力及時間之節省相當可觀。

#### 七、結 論

本文介紹利用電子計算機自動分析氣流場,首 先由測站觀測風場經由連續修正法計算得網格點風 速分量,將此風速分量輸入氣流線分析程式,即可 繪製氣流線圖。觀念上,氣流線的繪製過程類似於 作出許多小氣塊的瞬時軌跡。氣流場分析的困難首 先在於西太平洋區廣大洋面及低緯度區風場觀測報 告稀少,致使客觀分析處理困難,由於測站少,修 正量亦少,致使初始猜測值變成極重要,此一困難 似可由日後氣象衛星之連續觀測來克服之。其次, 在流線繪製過程中,困難在於何處開始繪一新的流 線及何時終止正在繪的一條流線,本文介紹的方法 提出一些規則來解決這些問題,並使繪出來的圖形 勻滑且能相當程度地縮短計算機時間。

最後,作者並以民國七十年十月十九日 00Z兩 組不同的即時氣象資料,引用此分析法分別繪製 850 毫巴的氣流分析圖及 500 毫巴的氣流線預測圖 ,分析迅速結果良好,顯示比法極具實用價值。

#### 八、誌 謝

作者感謝中央氣象局吳局長宗堯及郭組長文鑅 的大力支持,王枝正時鼎提供寶貴資料,蕭錫璋女 士提供具體建議並代為校稿,徐月娟女士協助修改 程式及中央氣象局電子計算機中心全體同仁的幫助 ,才使本研究得以順利完成,敬致最誠摯謝意。

#### 參 考 論 文

 Bedient H.A. and Vederman J., 1964: "Computer analysis and forecasting in the tropics"

Monthly Weather Review, Vol. 92, No. 12, pp 565-577

- 2. Cressman G. P, 1959:
- "An Operational Objective analysis system" Monthly Weather Review, Vol 87, No. 10, pp 367-374
- 3. Kurihara, Y., 1961:

"Accuracy of wind-aloft data and estimation of error in numerical analysis of atmospheric motion" Journ. Met. Soc. Japan, Vol. 39, No. 6, pp 331-345

- Saucier, W. J., 1955: Principles of Meteorological analysis The University of Chicago Press, pp 305-310
- Whittaker T. M., 1977: "Automated streamline analysis" Monthly Wenther Review, Vol. 105, pp 786-788
- 6. 徐月娟與胡仲英, 1976:
   「用電腦繪製天氣圖之研究」
   氣象學報第二十二卷第四期, 32-38 頁
- 熱帶氣象學, 1976:
   空軍訓練司令部編印, 363 頁
- 胡仲英, 1979:
   「ADAPS 系統之研究與設計」
   氣象學報第二十五卷第一期, 9-24 頁
- 9. 蔡清彥與胡仲英, 1975:
   「以相當正壓模式研究地形的動力效果」
   大氣科學第二期, 63-67 頁

### 工程上應考慮的地震問題

Engineering Seismologial Considerations

徐明同

#### Ming-Tung Hsu

#### ABSTRACT

This report represents my attempt to synthesize seismological considerations in civil engineering and my researches on seismicity of Taiwan and its relation to geotectonics in the past 20 years.

Section 1 briefly introduces the importance of seismological considerations in the field of civil engineering. In Section 2, seismicity of Taiwan is summarized with emphasis on its relation to geotectonics. The relationship between faults and earthquakes, and both geological and earthquake faults in Taiwan are mentioned in Section 3. In Section 4, first introduces the various hypothetical carthquakes, then the methods of evaluating design earthquake magnitude and intensity are discussed. Section 5 describes the spectra of ground motion and the site-dependent response spectra of structures which are currently adopted in U. S. A. and Japan.

#### 一、前

嘗

自古以來人類對於地震抱着莫大關懷,因為地 震突然發生,大者會在一瞬間把一個繁華的大都市 破壞殆盡,變成廢墟,一次造成幾萬人死傷者並不 罕見。1976年唐山大地震所造成之嚴重災情,我們 的記憶猶新。

「為什麼會發生地震?」是大家所關心的問題 ,科學家對這個問題,已做了許多研究,但到目前 為止還沒有達到預測的地步,故目前我們還無法知 道何時會發生地震。因此在地震經常發生而常常受 到災害的地區如臺灣,各種工程建設必須加以考慮 地震問題。尤其是重要設施(critical facilities) [1]*因其破壞性可能引起嚴重人命與財產的損失, 以及環境的退化。例如原子能發電廠,化學工廠, 液化瓦斯終點站,水壩等。此外在緊急情況時仍應 保持正常服務大家之安全與健康設施,如警察局, 消防隊及醫院等也包括在內。

*〔〕 內數字指參考文獻

沒有考慮地震欬應的建築物,通常會受到嚴重 災害,例如在伊朗或者土耳其發生地震規模 M 7.0 左右的地震,往往造成死者超過萬人以上的嚴重災 害,而同樣的地震發生在紐西蘭,僅能造成死者百 人左右。因為前者大部分建築物為土角所造成的; 而後者為考慮過耐震的木造房屋。在臺灣亦有同樣 的例子。在1935年4月21日新竹、臺中烈震,其規 模M為 7,1,而發生死者 3,276人的有史以來到現 在為止的大災害,但值得注意者,其中日本人只有 5人。臺灣人大部分住在土角造或箇陋房屋,而日 本人都住在較堅固的木造房屋之故。由此可見耐震 結構物之重要性。

在工程上需要考慮的地震問題,包含下列各種 問題。在工址(site)鄰近地區的地震活動情況, 有無斷層,最大可能發生的地震 (maximum credible earthquake, 簡寫 MCE)之規模 (earthquake magnitude)和震度(seismic intensity)以及地震動的性質或其波譜(spectrum)等問題。解答這些問題必須捜集過去所得的 地震資料,以統計及實驗方法處理,而預測將來可 - 18 -

能發生的情況。

本文將介紹上述問題**?**以供工程人員做耐震設 計之参考。

#### 二、臺灣地區地震活動與地體構造

臺灣位於環太平洋地震帶(Circum-Pacific seismic zone) 西側之中部附近,經常發生地震 ,其中一部分為破壞性大地震,而生命,財產曾經 蒙受很大損失。因此自十七世紀中葉各地地方誌中 就可尋找到大地震震災的記錄。自1897年起中央氣 象局各測候所安裝地震儀開始辦理地震觀測迄今已 八十餘年。隨着測站與儀器設備之增設與改進,地 震記錄逐漸充實。完善之地震目錄為研究地震活動 及地震工程所需要的最基本資料,徐氏[2]所編的 目錄為最新者。

關於工程上有與趣的地震為引起災害的破壞性 地震,其規模M大約 5.5以上的地震。表一及表二 分别表示地震儀觀測以前及以後之災害地震目錄。 至於大地震之比較詳細說明可見臺灣之大地震 [3]。

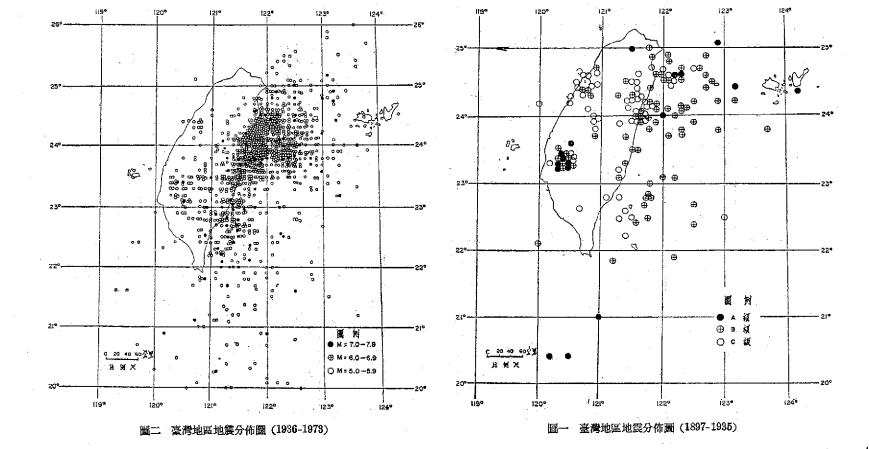
			· · · · · · · · · · · · · · · · · · ·
國曆(太陰曆)	西曆(太陽曆)	震災地	備考
	1644年7月30日		
永曆八年十二月十四日	1654年1月21日	臺南、高雄	餘震繼續三週
永曆十五年	1661年2月15日	臺南	
康熙五十年九月十一日	1711年10月22日	嘉義	
康熙五十九年十月一日	1720年11月1日	臺南	
康熙五十九年十二月八日	1721年1月5日	臺南	家屋倒潰死者多數噴泥,餘震繼續十天
雍正十三年十二月十七日	1736年1月29日	臺南、嘉義、彰化	死者多數
乾隆十九年四月	1964年4月	淡水	
乾隆四十一年十一月	1776年12月11日	嘉義	家屋倒潰死者多數
乾隆五十七年六月二十日	1792年8月7日	嘉義、彰化	死者一百
嘉慶二十年六月五日	1815年7月11日	宜蘭	家屋損壞多數
嘉慶二十年九月十一日	1815年10月18日	淡水	
嘉慶二十一年	1816年	宜蘭	家屋倒潰多數
道光十三年十一月三日	1833年12月13日	宜爾	家屋損壞多數
道光十九年五月十七日	1839年6月27日	嘉義	家屋倒潰、山崩
道光二十年十月	1840年11月	雲林	山崩
道光二十八年十一月八日	1848年12月3日	彰化、雲林	家屋倒潰
同治元年五月九日	1862年6月5日	臺南、嘉義、彰化	家屋倒潰死傷者多數
同治六年十一月十三日	1867年12月18日	基隆	家屋流失海嘯來襲溺者數千
光緒七年三月二十一日	1881年4月19日	臺北	家屋倒潰萬華有死傷者
光緒十八年三月二十六日	1892年4月22日	臺南安平	家屋倒潰多數
光緒二十一年十二月二十九日	1896年2月12日	宜蘭	

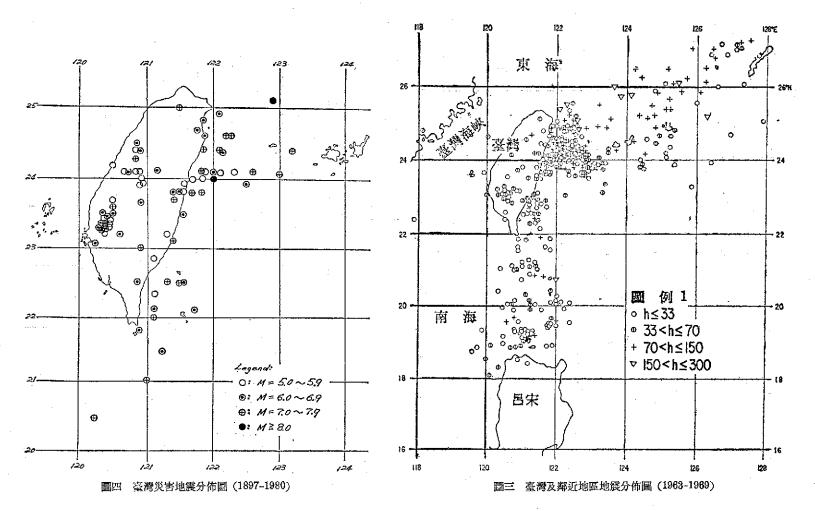
表一:地震儀觀測以前之臺灣大地震一覽表

表二:災害地震一覽表 (1897—1980)

* ÷														<u> </u>	· · · · · · · · · · · · · · · · · · ·
	發震	時(東海	座 120 月	<b>度標準</b> 暗	寺) -		震油			.4#*		災	害		地殼變動
【號碼	年	月	E	時	分	東 經 (度)	北 緯   (度)	深 度 (公里)	規	模	死(人)	傷 (人)	房屋全倒   (棟)	房屋損害    (棟)	
1	1901	6	7	8	5	121.8	24.7			6.0			* 1	57	
2	1903	4	24	14	39	120.5	23.5			6.1	. 3	10	66	840	· · ·
3	1 <b>904</b>	11	6	4	25	120,3	23,5		-	6.3	_ 145	158	661	3,197	地裂,噴砂,
.4	• 1905	3	17	6	42	120,5	23.6	很淺		7.1	1.258	2,385	6 769	14,218	断唇,地裂,噴砂,
5	1906 ·	3	26	11	29	120,5	23.7			5 <b>.0</b>	1	. 5	29	529	
6	1906	4	7	0	53	120.4	23.4	1		^{5.5} ไ	1	6	63	283	山崩
7	19 <b>06</b>	4	8 -	6	40	120,4	23,4			5.5	1	• • ·			
8	1906	4	14	3	18	120 4	23,4	:		^{6.6} ไ	15	84	1,794	10,037	地裂,噴砂,山崩
9	1906	4	14	7	52	120.4	23,4	20	· .	5.8J				10,001	
10	1908	1	11	11	85	121,4	23.7	淺層		7,3	2		3	- 5	地裂・山崩
11	1909	4	15	3	54	121.5	25.0	. 80		7.3	. 9	- 51	122	1,050	
12	1909	5	23	6	44	120.9	24.0			56		6	10	32	
13	1909	1	21	15	36	121.8	21.4	送層 .		7.3		- 4	14	39	
14	191 <b>0</b>	3	26	2	-38	121.6	23,9		а 1	5.5				小損害	
15	1910	4	12	. 8	23	122,9	25.1	200	-	8.3			13	59	
16	<b>1</b> 91 <b>0</b>	6	17	13	28	121.0	21.0		]	7.0		[		小損害	
17	1915	1	6	7	27	123.2	24.4	160		7.3				小損害	
18	1916	8	28	15	27	120,9	23.7			6.4	16	159	614	4.885	
19	1916	11	.12	6	31	120.7	24 0	2		5.7	1	20	97	972	
20	1917	1	Б	0	55	120.9	23.9			5.8	54	85	180	625	
21	1917	1	7	2	· 8	120.9	23 9			5.6	- *	21	187	498	

<u>6</u>1


	(續)			. *	• .	· ·		、		. • . •		··· -	•			•				 20
	發震	時(東	經 120 ]	<u> 度標準</u> !	<b>舟)</b>		震源				· · ·	災	害	· · ·						
號碼	年	月	B	時	<u></u> 分·	東經(	北 緯 (度)	深 度   (公里)	規	模	死 (人)	傷(人)	房屋全倒   (棟)	房屋損害   (棟)		淺月	層 淺	層		
22	1918	3	27	. 11	52	121.9	24.6		1	6.2		3		6						
23	1920	6	5	12	22	122.0	24.0	淺層	۶ _ ا	8,3	5	20	273	1,275						
24	1922	9	2	3	16	122.2	24.6	浅層	7	7,6	5	7	14	161						
25	1922	9	15	3	32	122,3	24.6	淺層	7	7.2	-	5	24	389						
26	1922	9	17	6	44	122.5	23,9	· · ·		6.0	•	1	6	197	-		÷			
27	1922	10	15	7	47	122,3	24.6	la Torrada	E	5.9	6	2	1	14						
28	1922	12	2	11	46	122.0	24.6		e	6.0	´ 1	2	1	33						
29	1922	12	13	19	26	122.1	24.6		1	5.5		1	1	13						
30	1923	. 9	29	14	51	121.1	23.8	. 1		5.5	. 1	1	1	80						
31	1925	4	17	3	53	120.2	20.4	淺層	7	7.1		;	•	小損害	: 					
32	1925	6	14	13	38	121.8	24.1		5	5.6		1	. !	339						
33	1927	8	25	2	9	120.3	23,3		6	ô.5	11	63	214	1,209						
34	1930	8	8	7	<b>4</b> 9	121.3	23.2		5	5,6			'	小損害						
35	1930	12	8	14	20	120.4	23.3		6	3.1	4	25	49	449	地裂		-			
36	<b>1</b> 930	12	8	16	10	120.4	23,3		6	3.5		. 20	49	611	理波		•			
37	1930	12	22	7	52	120.4	23,3		6	3.5	- I		ļ	1 4	· · ·				·	
38	1930	12	22	8	8.	120.4	23.3		6	6.5		14	121	2,919						
-39	1930	12	22	12	19	120,4	23.3		5	5.6 ^J		1		-				-		
40	1931	1	24	23	2	120.4	23,4		5	5.6		ł		698						
41	1934	8	11	16	18	121,8	24.8	淺層	6	3,5	1	3	7	11						
42	1935	2	10	8	20	122,1	24.9	60	6	3.3		· · · !		小損害	· ·					


(續)

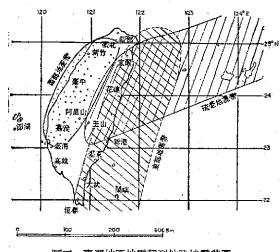
.

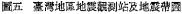
ub <del>rist</del> i	發震	時(東	經120	度標準明	<b>6</b> 〕		震源	-	規模		災	害	•	地殼變動
號碼	年	月	8	時	分	東 經 (度)	北 緯 (度)	深 度 (公里)	<u>况</u> (吳	死(人)	傷(人)	房屋全倒   (棟)	房屋損害   (棟)	电双变动
<b>4</b> 3	1935	4	21	6	2	120.8	24,3	5	7.1	3,276	12,053	17,907	36,781	斷層,山崩,地裂
44	1935	4	21	6	26	120.9	24.7	淺層	6.0	0,210	12,000	11,001	00,001	ookingal 、 hri YM 、 NR 4×
45	1935	5	5	7	2	120.8	24.5	淺層	6,0		38	28	571	
<b>4</b> 6	1935	5	30	3.	43	120,8	24.1	淺層	5.6			- 2	24	
47	1935	6	7	10	51	120,5	24-2	淺唇	Б7		2	5	190	
<b>4</b> 8 ·	1935	7	17	0	19	120.7	24.6	30	6.2	J . 44	891	1,734	5,887	
49	1935	9	4	9	38	121.5	22,5	淺層	7.2				114	
50	1936	8	22	14	51	121 1	22.0	-	7.1		14	. 35	341	
51	1937	12	8	16	33	121.4	23.1	10	7.0			.7	140	山崩,地裂
52	1938	9	7	12	3	121 8	23,8		7.0	•			小損害	-
53	1938	11	2	14	40	121.2	24.1		6.1				小損害	
54	1939	11	7	11	53	120.8	24.4	淺唇 :	5,8			4	20	
55	1941	12	17	3	19	120.4	23.4	10	7,1	358	733	4,620	11,086	山崩
56	1943	10	23	0	1	121.5	23.8	5	^{6.2} ]	1	1	1	148	
57	1943	10	23	0	15	121,5	23,8		5,6	. 1				τ.
58	1943	11	3	0	51	121.8	24.0		5.0	-	ſ		. 87	
59 .	1943	11	24	5	51	121.7	24.0	0	5.7				479	<u> </u>
60	1943	12	2	13	9	121.5	22.5		6.1	3	11	139	295	山崩
61	1944	2	6	1	20	121.4	23.8	• 5	6,4			2	388	地裂
62	1946	12	5	6	47	120.4	23.1	3.	6,3	77	469	3,654	2,084	斷層,山崩
63	1951	10	22	Б	<u> 34</u> ···	121.7	23.8	- 0	7.3}		· .		·	

號碼	發震時(東經 120 度標準時)					震源				災 害					
	年	月	Ħ	時	分	東 經 (度)	北緯 (度)	深 度 (公里)	夏規	模	死(人)	傷 (人)	房屋全倒   (棟)	房屋損害   (棟)	地發變動
64	1951	10	22	11	29	121.8	24,1	20		_{7.1} }	68	- 856	. *	2,382	山崩,地裂,斷層
65	1951	11	25	2	47	120.9	23.0	20		7.3	17	326		1,598	山崩,地裂,斷層
66	1955	4	• 4	12	11	120,9	21.8	5		6.7		7	22	171	
67	1957	2	24	4	26	121.8	23.8	80		7.0	11	33	64	100	山崩
68	1959	4	27	4	41	123.0	24.1	50		7.7	   1		9	4	
69	1959	8	15	16	57	121,2	21.5	20		6.8	17	68	1,214	1,375	
70	1959	8	17	16	25	121.2	22.3	40		5.6				小損害	
71	1959	8	18	8	34	121.7	22,1	15		6.1			32	5	
72	1959	9	25	10	37	121,2	22.1	10		6.5		8	3	65	
73	1963	2	13	16	51	122.1	24.4	10		7.3	15	3	6	6	
74	1964	1	18	20	4	120.6	23.2	20	[	6.3	106	650	10.502	25,818	山崩,地裂,噴砂
75	1966	3	13	0	31	122.6	24.1	63		7.5	. 7.			小損害	
76	1967	10	25	8	59	122.1	24 4	65		6.1	2	2	23	27	山崩
77	1972	1	25	10	7	122,3	22.5	70		7.2	1	1	2	4	山崩
78	1972	4	24	17	57	121,5	23,5	3		6.9	5	17	28	62	山崩,斷層,地裂

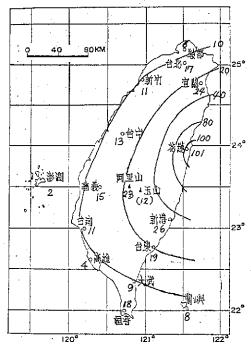





- 24 -

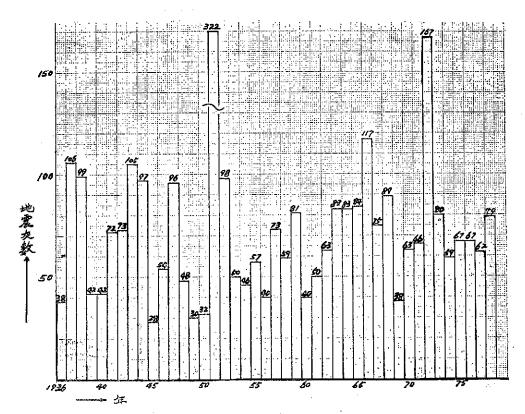

- 25 -

表三:依有感距離半徑 r 定義之地震規模


地震規模	定義	Richter 規模 M		
顯著(A級)地震	r≥300 km	M≽6.4		
稍顯著 (B級)地 震	300km>r≥200km	6.4>M≥5.7		
小區域(C級)地震	$200  \rm km > r \ge 100  \rm km$	5.7>M≥4.8		
局 發 ( D 級) 地 震	100 km > r	4.8>M		

關於臺灣及其周圍地區地震分佈見圖一、二、 三及四。圖一表示地震觀測閉始初期之分佈圖,地 震規模以A,B及C級分類,其說明見表三。圖二 及圖三表示觀測網比較充實時期之分佈圖。圖四表 示災害地震之分佈。由這些圖可知在臺灣地區,大 部分地震集中在四個地區叫做地震區 (earthquake province),即花蓮外海,綠島附近,嘉義 及苗栗附近。而這些地震區連接起來形成地震帶。 臺灣主要地震帶以北北東至南南西方向從島上及其 附近穿過,可分成幾個副地震帶。徐氏[4] 稱為東 部及西部兩個地震帶,以及沿琉球列島至臺灣中部 的琉臺地震帶。此三個地震略示於圖五。

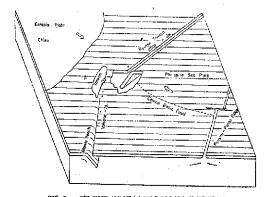





西部地震帶從臺北附近向南南西延伸至臺南附 近,寬約80公里,東部地震從宜蘭東北外海展開, 同樣向南南西延經恒春半島東方進入呂宋島,寬約 130 公里,而疏臺地震帶自琉球列島沿該列島向西 南西延伸至臺灣中部結束,寬約160公里。值得注 意者,琉臺地震帶與東部及西部兩個地震帶之走向 完全不同。 臺灣地區有若干比較寧靜或無地震的地區,即 西北部,西南部,澎湖羣島及臺灣海峽。為了比較 起見,各測站所觀測的人體有感地震年平均次數繪 成圖六。最多者為花蓮年平均101次,最小者為高 雄只有4次,相差達二十五倍之多,而澎湖只有2 次〔5〕。



圖六 年平均有感地震次數分佈圖 (1940-1974)

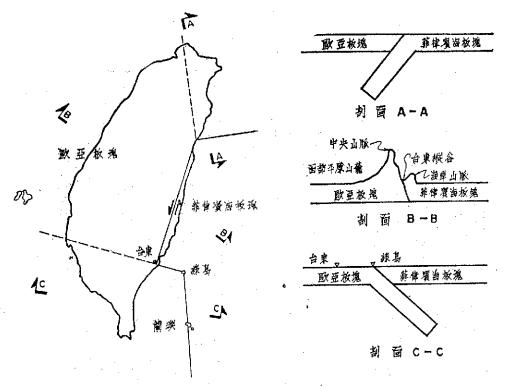

關於地震活動之長期時間變化可見圖七。因為 自1936年起地震資料比較充實且測站網的檢知能力 (detection capability)也提高,規模 M4.0 以上的地震大部分可以測得〔6〕,故從比年開始計 算規模 M。由此圖可知地震活動歷年變化相當顯 著。最高值為 322 次係發生於1951年,而最小值為 28次發生於1945年相差11倍之多。地震活動是否有 週期性很難說,但是有一值得注意的現象是活動最



圖七 M≥4.0 地震次數歷年變化圖

旺盛之1951年,前有連續三年不活躍的期間,1972 年前三年亦有同樣的現象。

十多年來地球科學界有劃時代的進步。板塊構 造(plate tectonics)之理論可以解釋許多地球 科學的問題,而其中之一為地震之發生機制(mechanism)[7]。依照此學說地震即發生在板塊間 之境界。據徐氏[6],臺灣附近板塊運動之情況如 模式圖八及九。歐亞板塊和菲律賓海板塊在臺東縱




圖八 臺灣及鄰近地區板塊運動示意圖

谷衝突而造成中央山脈。在臺灣北部,菲律賓海板 塊沿琉球列島向歐亞板塊下俯衝(underthrust) ,形成琉球海溝,而在臺灣南部以南至呂宋島中部 為止發生相反現象。參照何氏[8]臺灣之地質構造 區,臺灣之地體構造區(geotectonic province )可分為(A)西部平原及山麓區,(B)中央山脈區,(C) 東部區及00板塊隱沒區(或深層地震區)等四區如 圖十所示。西部平原及山麓區屬於中新世及上新世 ,兩者以金山、竹湖、三義及觸口等斷層為壞界。 中央山脈區屬於漸新世及始新世(第三紀變質岩)

,而與山麓區以屈尺斷層為境界。東部區為第三紀 地層所構成,包括海岸山脈重力岩幕,利吉混同層 岩塊及原地堆積地質,而與中央山脈區以臺東縱谷 為境界。以上所述各區內所發生的地震均為淺層地 震,即其深度不超過70公里。一般來說,西部的震 源深度比京部者較淺。板塊隱沒區係指菲律賓海板 塊向歐亞板塊下俯銜,而兩板塊間之相對運動所引 起之地震,包括較深的地震區。在臺灣附近最深者 可達 200 公里左右。

在工程上考慮地震問題時,應對各種地體構造



圖九 臺灣附近板塊運動模式圖

内所發生之地震分别加以檢討。

三、斷 層 與 地 震

斷層為兩種岩石體以一個面為境界所發生的滑 動現象,可分為走向滑(strike-slip)及傾向滑 (dip-slip)兩種。而走向滑斷層亦可分為左旋, 右旋兩種,傾向滑斷層可分為正,逆兩種,傾向 滑和走向滑分量相差不多時叫做斜斷層(oblique fault)。地震發生時出現在地面的斷層叫做地層斷 層[9]。

地震與斷層之關係為地震學及地質學之主要研究論題。地震發生後產生斷層或者斷層運動發生後 產生地震的問題爭論很久,而於1960年代已獲得定 論,即地震由斷層運動所引起。許多斷層中第四紀 ——約200萬年到現在——以後重覆活動的或者將 來有可能活動的斷層叫做活動斷層(active fault )。地震斷層原則上都屬於活動斷層。其認定為目 前地震預測研究中之一主要題目。

前面已述及地震是震源附近斷層運動所引起, 但地震發生後,斷層不一定出現在地表面。Tsuboi [11] 提倡地震體積 (earthquake volume)的 觀念。根據他的想法,單位體積地穀物質內能蓄積的能量是一定的,而地震規模愈大,地震體積也愈大。因此規模較大的地震比較小的地震,斷層出現在地表面的機會愈多。在地殼內發生的地震,如規模M大於 7.4,地震斷層的出現率可達 100%,而規模M小於 7.4大於 7.0者,其出現率約60% [11]。

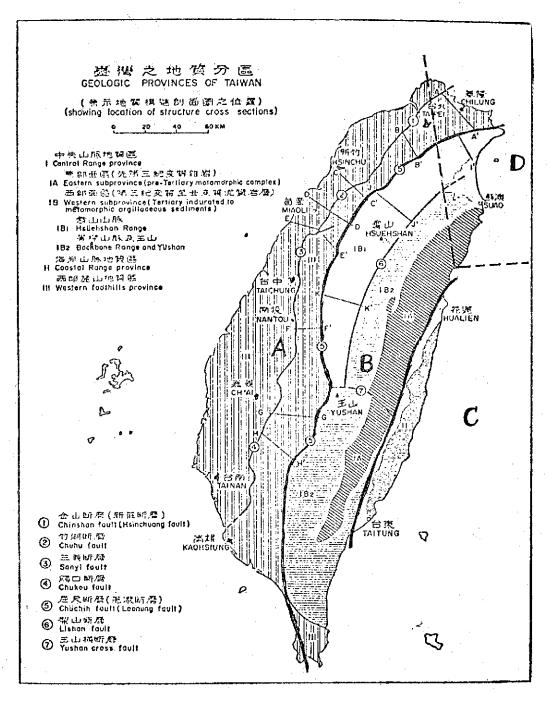
活動斷層諸性質中,與地震規模及發生間隔有 關的主要因素計有三〔12〕。

(1)斷層系統之長度L,與所產生之地震規模M 有關。

(2)第四紀後期中之平均移動速度S。松田[12] 把S分為三級,即A級(m/1000年),B級(0.1m /1000年)及C級(0.01m/1000年)。

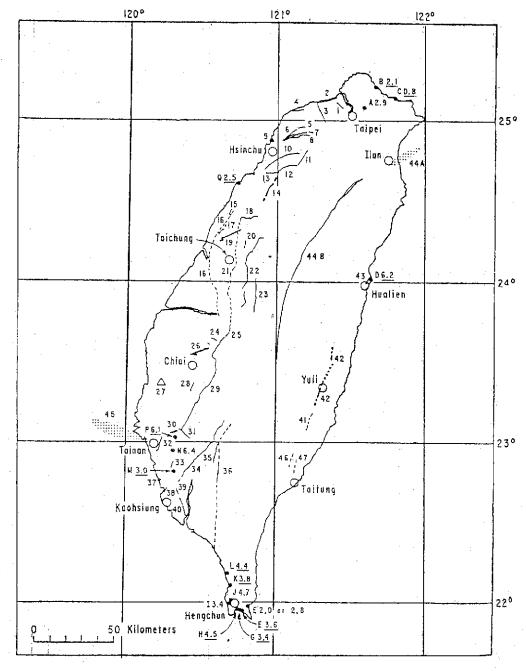
(3)地震時斷層運動之變位量D。

Iida [13] 搜集各地資料發見D與M,L與M 有下列關係,


$$\log D(m) = 0.55M - 3.71$$
 (1)

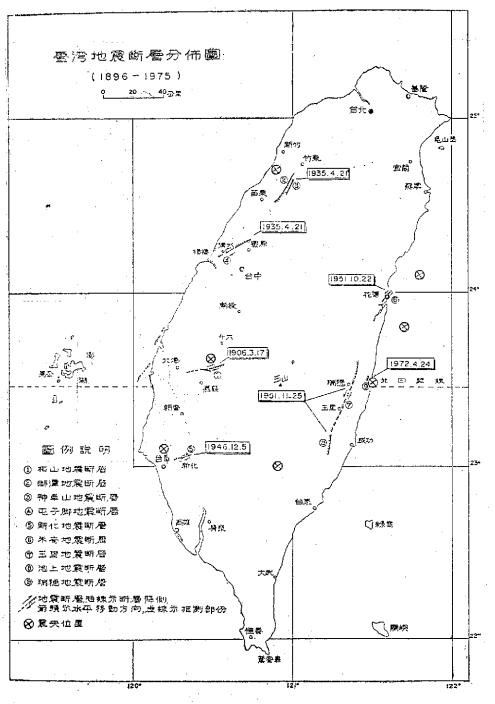
$$\log L (km) = 1.32M - 7.99$$
 (2)

類似的公式很多,例如,


log L=0.5M-1.8 (Otsuka [14]) (3)

- 28 -




圖十 臺灣之地體構造分區圖

- 29 --



圖十一 臺灣之斷層分佈圖

- 30 --



圖十二 臺灣地震斷層分佈圖

表四:臺灣市地震)斷層)概況表

(民國前15年---民國64年)

地震斷層名稱	隨伴產生之地震	斷 層 走 向	斷層長度 (公里)	斷層升側	變 位 情 形
梅山地震斷層	民前 5 年 8 月17日嘉義烈震 (1906)	N53°~75°E	13	中抗以東斷層東北側為 升側,中抗以西斷層西 南側為升側。	最大水平位移240公分,最大垂直變位180公分。
獅潭地震斷層	<u>.</u>	N20°~30°E	21	远 倾	↓ 最大垂直變位300公分,水平位移不明。
屯子脚地震斷層	民國24年(1935)4月21日 新竹、臺中烈震	N60°E	20	斷層升側以南側為主, 惟局部在后里車站以東 ,斷層北側為升側。	、 最大水平位移200公分,最大垂直變位60公分。
神卓山地震斷層		N20°~30°E	10	東側	最大垂直 <b>變位60</b> 公分,水平位移不明。
新化地震斷層	民國35年12月5日豪南烈震 (1946)	N70°~80°E	6	斷層升側主為北側,推 於永康附近以西,南側 轉為升側。	最大水平位移200公分,最大垂直變位76公分。
米崙地震斷層	民國40年10月22日花蓮烈震 (1951)	N20°~55°E	10	東南側	最大水平位移200公分,最大垂直變位120公分。
玉里地震斷層	民國40年11月25月臺東縱谷烈震 (1951)	N20°~30°E	.43	東側	最大水平位移163公分,最大垂直變位130公分。
瑞穂地震斷層	民國61年4月24日瑞穂烈震 (1972)	N25°E	2.5	東 側	最大垂直位移7 <b>0</b> 公分,水平變位不明。

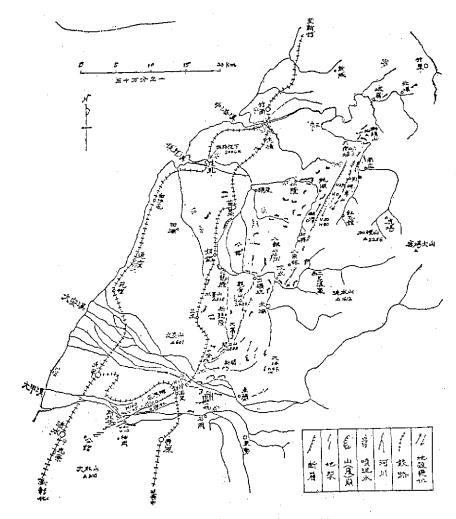
3

- 32 --

log L=0.6M-2.9 (松田 [12]) (4)

log D=0.6M-4.0 (松田 [12]) (5)

**據 Wallace [15]**, 斷層平均運動速度S與 此斷層所產生的地震發生間隔(週期) R有下式的 關係,

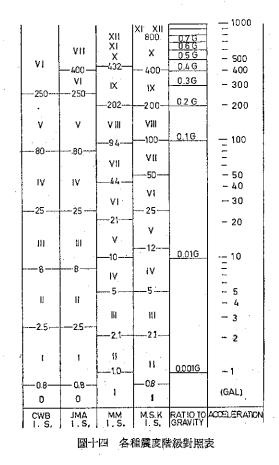

$$R = D/(S - C)$$
(6)

上式中D為斷層之變位量,而C為蠕動(creep) 速度。如無發生蠕動的地區,可用下式。

 R=D/S
 (7)

 D及S均可测得,故由上式可以估計地震發生週期。
 •

下面將介紹臺灣之斷層及地震斷層。圖十一係 取自 Bonilla [16],表示臺灣各地之斷層。圖 中數字表示斷層名稱,即 1. Wuku (五股), 2. Tananwan (大南灣), 3. Nankan (南崁), 4. Tsaota (草潔), 5, 6, 7, 8. Yangmei (楊 梅) 8亦稱 Huko (湖口), 9. 無名, 10. Hsincheng (新城), 11. 無名, 12. Chutung (竹 東), 13. Touhuanping (斗換坪), 14. Chihhu (可能是竹湖), 15. 無名, 16. Changhua (彰化) 或 Tachia (大甲), 17. Tiehchenshan (鐵砧山), 18. Sani (三義), 19. Tuntzuchia (屯子脚), 20. 無名, 21. Chelungpu (車籠埔), 22. Tamaopu-Shuangtung (大 茅埔——雙冬), 23. Shuilikeng-Tatakoa ( 水裡坑——不詳), 24. 無名, 25. Tachienshan




圖十三 1935年 4 月21日新竹臺中烈震炸變圖

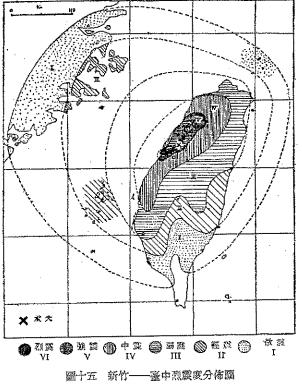
(大尖山), 26. Meishan (梅山), 27. Yichu
(義竹), 28. Muchiliag (木履寮), 29. Chukou (獨口), 30. Hsinkua (新化), 31. 無名
, 32. Houchiali (後佳里), 33. Hsiaokangshan (小港山), 34. Chishan (旗山), 35. Liukuei (六龜), 36. Chaochou (潮洲), 37. 無名, 38. Yuchang (右昌), 39. 無名, 40.
Fenshan (鳳山), 41. Chihshang (池上),
42. Longitudinal Valley(縱谷), 43. Meilun
(美崙), 44. Median (中央), 45, 46 及 47. 無名。圖十二表示張氏 [17] 臺灣地震斷層分佈圖
, 其概況如表四。圖十三表示1935年4月21日臺灣
最大災害地震的地變圖 [9]。

#### 四、設計地震及震度

在工程上最重要的地震問題是「在工址究竟將 來會發生多大的地震規模及震度?」地震規模( earthquake magnitude) M是測定地震大小的 一種尺度,通常採用 Richter[18]的尺度(scale (,其定義如下:在震央距離100公里標準扭轉地 震儀(standard torsion seismometer,或稱 Wood-Anderson seismometer)[固有週期 0.8 秒,倍率 2,800倍,阻尼常數 0.8]記象最大 振幅(單位為 µ)之對數,為一個無名數取至小數 一位,與地震所釋放出來的能量有關。震度(seismic intensity)是表示地震動之强弱與加速度 有關。震度用級表示,有各種震度階級,而在中央 氣象局使用者如表五,和其他震度階級比較結果如 圖十四。圖十五表示1935年4月21日臺灣最大災害 地震的震度分佈圖關於地震規模M之詳細說明參考



33 -


#### 表六。

解答上述問題必須先收集工址鄰近地區之地震 資料,包括儀器觀測記錄及過去歷史上地震災害的 文字記載,其期間愈長愈好,然後評估可能影響工 址的最大地震規模及震度。通常考慮的範圍大約以 工址為中心150至300公里範圍內在不同地體構造區

震度(級)	名	稱	說	加速	废	(gal)
0	無	感	地震儀有紀錄,人體無感覺。	0.8	以	下
1	徾	震	人靜止時,或對地震敏感者可感到。	0,8	~	2.5
2	輕	震	門窗搖動,一般人均可感到。	2.5	~	8.0
3	弱	震	房屋搖動,門窗格格有聲,懸物搖擺,盛水勛盪。	8.0	~	25.0
4	ф	震	房屋搖勸甚烈,不穩物傾倒,盛水達容器八分滿者濺出。	25	~	80
5	强	震	<b>牆壁龜裂,牌坊烟囱傾倒。</b>	80	~	250
6	烈	震	房屋傾場,山崩地裂,地層斷陷。	250	以	<u>+</u> .

表五:中央氣象局震度階級

- 34 ---



內所發生之地震。

對於重要設施耐震設計應考慮的假想地震( hypothetical earthquake)可以分為三種,例 如水壩的耐震設計考慮下列三種地震[19]。

(1)可能發生最大地震 (maximum credible

'earthquake, 簡寫為 MCE)

MCE 之定義為在目前已知地體構造架 構下,可能對壩址產生最强烈地面振動之地 震。MCE 必須所有已知地質及地震資料所 支持之合理且可信的事象。其評判即根據該 地體構造區過去地質運動之形跡及歷史地震 記錄所推測之最大地震為依據。

(2)設計基準地震 (design basis earchquake, 簡寫為 DBE)

DBE 之定義係在結構物經濟壽年內預 期將發生一次之最大地震。其再現間隔 ( recurrence interval)通常為大端採用 100年內一次,中小型之普通壩將採用50年 一次。

(3)運轉基準地震 (operation basis earthquake, 簡寫為 OBE)

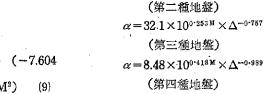
OBE 之定義係在結構物經濟壽年間預 期將發生數次之地震。其再現間隔通常設為 25年。

以上各種基準之地震,參考地質學及地 震學證據以及統計方法 [20] 可以求得,而 在各種地體構造大約具有一定值。地震規模

求出後計算震央距離或震源距離,如有斷層存在即 取斷層至工址最短距離。然後依下列震央距離 $\Delta$ ( 或震源距離R)及地震規模M與震度或水平加速度  $\alpha$ (單位為 gal)之關係式或者圖表求加速度。

(1)金井〔21」公式

衰穴:地 震 規 模 解 說


(1)M大於9之地震,自地震飘测以來倚未發生過。
(2)M為 8.5~9 之地震為大級之地震,全世界大約十年發生一次。
(3)M為 8~8.4 之地震為第一級大地震,如震央在陸上會造成大災害,如震央在海底會引起大海嘯,且隨着有很多餘震,全世界大約每年發生一次。
(4)M為 7~7.9 之地震為相當大的地震,如震央在陸地會造成大災害,如在海底會引起海嘯,会世界大約每年發生二十次。
(5)M為 6~69 之地震發生於陸上會造成災害,世界上任何頭等地震觀測所可測此地震,每年大約發生一百五十次。
(5)M為 5~5.9 之地震,有感區域相當大,震央附近會造成災害。
(7)M為 4~4.9 之地震,有感區域相當大,震央附近會造成災害。
(8)M為 3~3.9 之地震,在震央附近,人體可以感覺。
(9)M為 2~2.9 之地震,人體感覺不到,震央附近之觀測所可測得。
(10)M為 1~19 之地震,用高倍率地震儀可以觀測到。
(10)M為 1~19 之地震,設置在邁當地點之超高倍率地震儀可以觀測到。
以上所述僅適用於後雲源之地震。

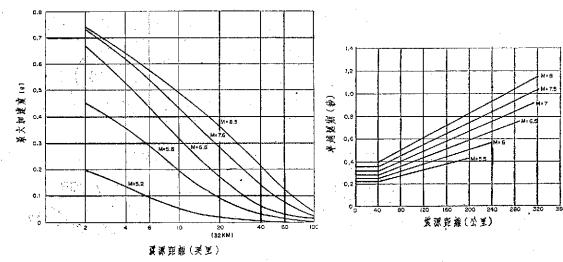
$$\alpha = \frac{1}{T} \times 10^{-0.16 M - (1.66 + \frac{3 \cdot 60}{R}) \times \frac{10^{-6} m^{-1.63}}{10^{-1.63}}}$$
(8)

上式中T為卓越周期單位秒。
 (2)岡本〔22〕公式

$$\log_{10}\alpha = \log_{10} 640 + \frac{\Delta + 40}{100}$$
 (-7.604  
+1.7244 M-0.1036M²) (9)  
(3) Esteva 和 Rosenblueth [23] 公式  
 $\alpha = 110 e^{0.6M} \times R^{-1.6}$  (10)  
(4)日本建設省土木研究所 [24] 公式  
 $\alpha = 18.4 \times 10^{0.302M} \times \Delta^{-0.800}$  (11)

(5)日本建設省建築研究所〔25〕公式




# (6)Schnabel 和 Seed [26] 圖

 $\alpha = 28.5 \times 10^{0.207 \,\text{M}} \times \triangle^{-0.598}$ 

(第一種地盤) α=13.2×10^{0.880 M}×Δ^{-0.806}

圖十六表示震源距離,地震規模與最大加速度 之關係。

至於金井公式所需卓越周期可用實測值或Seed 等〔27〕之圖十七。



鐵十六 震源距離地震規模與岩盤最大加速度之關係圖

MCE 由上述公式或圖所求的震度不一定是最 大震度,震源距離较近的較小地震,有時其震度較 大。此時最大震度應用此值。事實上 MCE 可能 發生的時間間隔遠超過結構物的壽命,故採用最大 震度為設計震度並不太經濟故採用結構物壽命內可 能發生的最大震度較為合理。此值當然比前者較小 ,而可做為靜態設計之基準。以上所述者爲水平震 度,而如需要垂直震度經驗上採用水平震度之一半

除上述方法以外,亦可使用最大震度或地震危 害圖 (seismic risk map) 求設計震度。圖十八 篇臺灣地區最大震度分佈圖 [28] 。關於地震危害 圖,目前有三種。圖十八為徐氏所繪的 50,75 及 100 年內最大加速度之預期値分佈圖,圖二十為張 圖十七 震源距離地震規模與卓越週期之關係圖

氏及蔡氏 [29] 所繪, 而圖二十一為茅氏[30]等所 繪的危害圖。關於建築技術規則中震區劃分已有徐 等 [31] 之修訂建議如圖二十二。

至於强烈地震發生時强烈震動時間(秒)與地 震規模之關係可參考 Housner [32] 之圖二十三 。

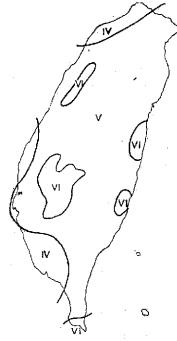
## 五、地震動波譜及結構物反應譜

前節已述靜態設計所需要的設計震,但如需要 做動態分析時,須有地震動波譜(spectrum)才 可。一般來說在特定的工址要獲得强大地震動的波 譜幾乎是不可能的事。

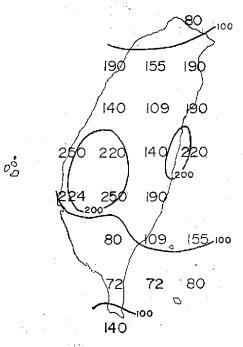
據大崎(33),地震動波譜計有金井、(亦名周期 --次數)波譜,機率密度波譜, Fourier 波譜(

35 —

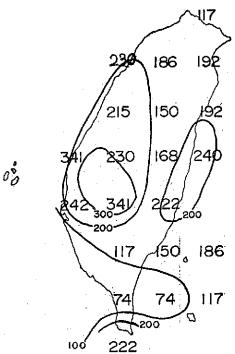
(12)


(13)

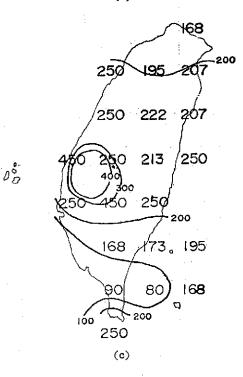
(14)


(15)

- 36 --


0°D IV




圖十八 臺灣地區最大震度分佈圖



圖十九50年(a), 75年(b) 及100年(c) 年內可能來嬰地 震最大加速度預期値分佈圖



(b)

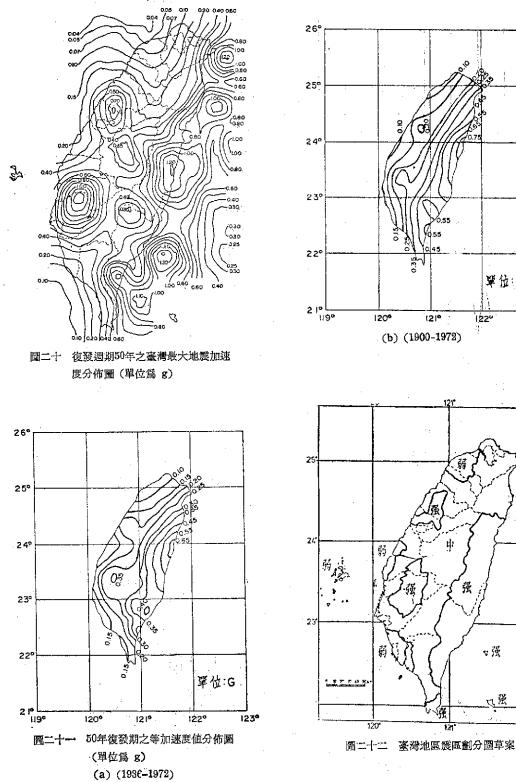


- 37 -

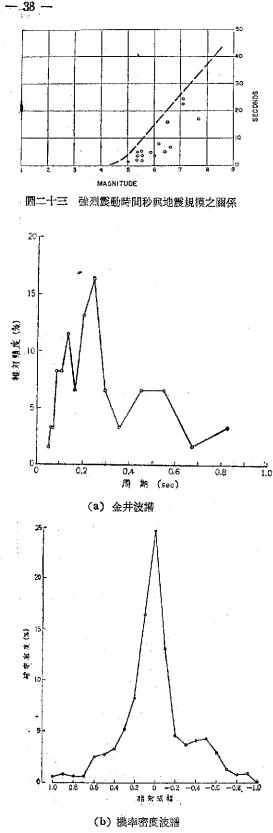
單位:G

123*

23


17

122


∨强

孫

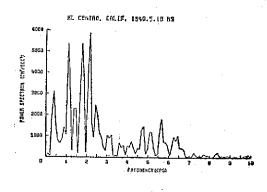
122°



强



有振幅及相位兩種)及功率波譜(power spectrum)等。圖二十四為美國加州1940年El Centro 地震各種波譜的例子。近年來地震設備已有大改善 ,强震儀的設置亦增加很多,各種不同地盤的標準 波譜在美國及日本已獲得不少。


在工程上以地震動波譜做入力以外,還需要結 構物的反應譜(rerponse spectrum),有移位 ,速度和加速等三種[9]。通常普遍使用者為加 速反應譜。結構物之反應為固有周期及衰減常数( damping constant)之函數而隨着時間而變。 從耐震設計的立場來說,反應的最大值比時間變化 的情形更重要。反應譜受地盤之影響很大。目前把 地盤分為四種,例如在美國 Seed 等[34]分為 下列四種:

(1)岩 盤

(2)硬的土壤(stiff soils) 淺於150英尺(3)深層不結合土壤 (deep cohesionlees)



(c) Fourier 波譜

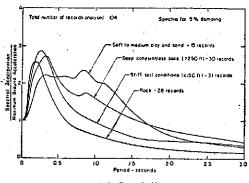


(d) 功率波譜

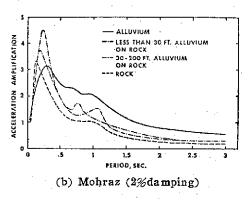
圖二十四 地震動波譜之例子

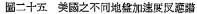
soils),其深度深於250英尺。

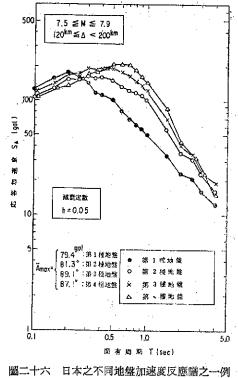
(4)由軟柔至中度硬的粘土而有沙或礫層所形成 的土壤堆積物


在日本土木研究所〔24〕 分為下列四種:

	<b>笛</b> _──痡∫	(1)第三紀以前之地盤(稱爲岩盤)
** 個	<ul><li>(1)第三紀以前之地盤(稱爲岩盤)</li><li>(2)到岩盤之洪積層厚度未満10公尺</li></ul>	
	領一個	(1)到岩盤之洪積層厚度超過10公尺 (2)到岩盤之沖積層厚度未滿10公尺
	第二種(	(2)到岩盤之沖積層厚度未滿10公尺
	第三種	沖積層厚度未満25公尺,且軟弱層厚
		度未満5公尺


第四種 上記以外之地盤


圖二十五表示 Seed 等 [33] 及 Mohraz [ 35] 所得不同地盤之加速度反應譜,而圖二十六在 日本 [24] 所得不同地盤之加速度反應譜之一例子 。圖二十五所示者為基準化 (normalized),故 一但求出工址的設計震度,即以此值為一,然後可 得不同週期的反應值。


在沒有實際觀測記錄以前,只好參考這些圖。



(a) Seed 等







六、結

論

以上介紹工程上應考慮的地譜問題。從臺灣的 地震活動說起,言及地體構造與地震的關係以及斷 層與地震的關係,並介紹臺灣的地質斷層及過去所 發生的地震斷層。

其次介紹耐震設計所需要的設計震度之求法及· 地震動波譜以及結構物反應: 。

回想一世代以前筆者係臺灣省防殿防震委員會 之一員参加防震工作。當時工程界對地震可以說沒 有什麼考慮,僅沿用日據時代的震度基準為設計的 依據。筆者一直呼籲耐震工程之重要性,尤其是大 地震發生時。近十年來工程界逐漸重視地震問題, 而且出現很多年青學人,地震工程之研究逐漸進入 軌道,屬的非常欣快。

#### 參 考 文 獻

- National Academy of Sciences(1980): Earthquake reseach for the safe siting of critical facilities, 49 pp.

3. 徐明同 (1980) :臺灣之大地震,氣象學報

- ,26卷,3期,33-49.
- 徐明同(1970):臺灣地區有感地震次數與 震度之關係,氣象學報,16卷,2期,31-35.
- Hsu, M. T. (1975): Report on the regional seismicihy of Taiwan, Inst. Earth Sci. Academia Sinica, 131pp.
- Hsu, M. T. (1971): Seismicity of Taiwan and some related problems, Bull. Intern. Inst. Seis. Earthq. Eng., Vol. 8, 41-160.
- 7. 徐明同(1978):地震發生之機制,科學月 刊,9卷,9期,42-48.
- 何春茶(1975):臺灣地質概論,經濟部, 118頁,
- 9. 徐明同(1979):地震學,國立編譯館,388
   頁, *
- Tsuboi, C. (1956); Earthquake energy, earthqsakevolume, aftershock area, and strength of the Earth's crust, Jour. Phys. Earth, 4, 63-66.
- 11. 日本大ダム會議(1976):ダムにおける設 計地震動,30頁,
- 松田時彦(1975);活斷層から發生する地 震の規模と周期,地震,28,269-283.
- Iida, K. (1965): Earthguake magnitude, earthquake fault, and source dimensions, Jour. Earth Sci., Nagoya U., Vol. 13, No. 2, 115-132.
- 14. Otsuka, M. (1964): Earthquake magnitude and surface fault formation, Jour. Phys. Earth, 12, 5-10.
- Wallace, R. E. (1970): Earthquake recurrence intervals on the San Andreas Fault, Bull. Geol. Soc. Am., 81, 2875-2890.
- Bonila, M. G. (1977): Summary of quaternary faulting and elevation changes in Taiwan, Memoir Geol. Soc., China, No. 2, 43-56.
- 張憲卿(1976):近三十年臺灣之地震,臺 灣文獻,27卷,2期,162-195.
- Richter, C.F. (1935): An instmmental earthquake magnitude scale, Bull Seis. Soc. Am., 25, 1-32.
- Bureau of Reclamation (1978):Design and analysis of Auburn dam, P. 2-1.
- 20. 林祥欽、徐明同(1981):地震規模統計推 定諸法之應用研究,工程,54卷18期,501-

511.

- 21. 金井清 (1970) : 地震工學, 176頁,
- 22. 岡本舜三 (1971) : 耐震工學, 473頁
- 23. Esteva, L. and E. Rosenblueth (1963): Espectros de temflores a distancias moderadas y grandes, Proc. Chilean Conf. Seis. Earthq. Eng., Vol. 1, U. Chile.
- 24. 日本建設省土木研究所 (1977) :新耐震設 計法(案),15-16.
- 25. 日本建設省建築研究所(1977):新耐震設 計法(案),158頁
- Schnabel, P. B. and H. B. Secd ( 1973): Acceleratoins in rock for earthquakes in the western U. S., Bull. Seis Soc. Am., 63, 501-516.
- 27. Seed, H. B., I. M. Idriss and F. W. Kiefer (1968): Characteristics of rock motions during earthguakes, Rep. No EERC 68-5, U. Calif., 23pp.
- Hsu, M. T. (1975): On the degree of earthquake risk in Taiwan, Proc. 4th Japan Earthq. Eng. Symp., 59-64,
- 29. Chang, C.K. and Y. B. Tsai (1977): A study on the seiomic risk of Taiwan, Chaineese Earthq. Res. Center.
- Mau, S. T. Y. Shih and J. F. Kuo (1978): Seismic risk analysis in Taiwan, Proc. Central Am. Conf. Eathq. Eng., 9-18.
- 31. 徐明同、蔡義本、茅聲燾(1980):建築技 術規則中震區劉分之修訂建議,土木水利季 利,6卷,4期,101-105.
- 32. Housener, G. W. (1965): Intensity of earthquake ground shaking near the causative fault, Proc. 3rd World Conf. Earthq. Eng., Vol. 1, II 94-109.
- 33. 大崎順彦(1976): 地震動スベクトル解析 入門,260頁
- Seed, H. B., C. Ugas and J. Lysmer (1976): Site-dependent spectra for earthquake resistant design, Bull. Seis. Soc. Am., 66, 221-243.
- Mohraz, B. (1976): A study of earthquake response spectra for different geological conditions, Bull. Seis. Soc. Am., 66, 915-935.

^{- 40 -}

# 臺北盆地二氧化硫濃度之評估

The Assessment of Sulfur Dioxide Pollution Potential in Taipei Basin

張 哲 明

Che-Ming Chang

#### ABSTRACT

The research is based on the theory of Box Model, coordinated with the observed data of air quality and coocerned meteorological factors, together with the use of methods of linear regression and step wise regression to build the prediction model of sulfur dioxide concentration. The predicted value of this prediction model and the observed value posses a rather unique accordance. The can be ufilized as references for the prediction of air pollution potential as well as enviornmental assessment, and act as the indicators of air pollution warning for the supervising agency in order to maintain the quality of the air and to protect the health of the inhabitant living in Taipei Basin.

一、前

髾

近世紀來由於工業的迅速發展,人類生活水準 的提高,各種能源之消耗與日俱增,環境問題隨之 日趨嚴重, 空氣汚染問題尤為其重要的一環。 — 般言之, 空氣汚染可分為下列二類: (--)粒狀物質 (Particulate)之汚染:如落塵、懸浮微粒(Suspended Particulate) 。口有毒氣體 (Poisonous Gases) 之汚染:如二氧化硫 (SO₂)、一 氧化碳 (CO)、 氮氧化物 (NO_x) 以及第二次反 應產生的空氣汚染物——高氧化物 (Oxidant) 等。根據呂世宗教授等(1975)(),認為臺北市之 汚染源主要為汽車、工廠和家庭,而汽車排氣為都 市汚染的主因之一。其次為一般家庭用和工廠用燃 料所產生之汚染物以及其他如加工廠、製革廠、染 織廠、 酸鹼工廠等 化學物質外溢 大氣中引起之汚 染。呂氏等(1980)⁽³⁾又認為火力發電廠之廢氣, 對廠址附近環境空氣之品質影響甚大 , 尤以 SO2 和懸浮顆粒為最。農發會協助臺灣省衞生試驗所完 成的實況調查顯示 (1981) (3) ,臺灣區近二十年來 ,工業生產指數增加十五倍,能源消耗增加五至六 倍,使得臺灣地區農業生長環境受到嚴重的汚染, 且有逐年擴大趨勢。這項調查結果指出,空氣中破 壞生態環境的來源,主要為二氧化硫、氯化氮、氯 、氟化物、氫氧化合物、燻煙、灰塵和煙煤等,其 中以硫化物產生的二氧化硫最為普遍。參加這項調 查的專家並分析,臺灣地區中之二氧化硫主要是來 自以重油、生煤為熱源的工廠、柴油引擎車輛及製 造硫酸、化纖和金屬熔煉的工廠,但排放量最多者 為火力發電廠,此與呂氏先前之分析不謀而合,而 與美國(4)、英國(5)等之調查亦屬相同,尤以火力 發電廠為然。有關空氣汚染導致大量人畜致病或死 亡以及農作物遭受損壞之實例,亦是屢見不鮮。比 利時 Meuse Valley 事件 (9), 1930 年 12 月 1 日至5日,在數天內有六百多人致病,六十三人因 而死亡。 美國賓州的 Donora Valley 事件, 1948 年 10 月 25 日至 31 日, 全人口 14,000 人 中的 40 % 致病 , 10 % 相當嚴重 , 18 人死亡, 其所有死亡人員均超過 50 歲,且有 14 人曾有呼 吸系統的病歷。英國 London 事件, 1952 年 12 月5日至8日,在霧形成的12小時內,有為數頗 鉅之人員致病,根據統計,在12月的前三星期死 亡人數達 3500 人至 4000 人,其中 80 %至 90 % 之死者係在霧後因呼吸系統和心臟病立即死亡。其 中 90 % 死者年齡逾 45 歲,又其中的 60% - 70% 逾 65 歲,孩童之死亡率幾乎加倍。以上事件,據 事後調查,乃多為工廠或家庭所排放之 SO^a , 藉 雾滴之助形成硫酸雾,侵入人體,尤以肺部為最, 導致悲劇,而其發生時之天氣狀況均為高壓,逆溫

-- 41 ---

且有霧。其他尚有紐約事件,1953年、1962-1963 年,如 1953年,死亡人數超過數百;1962年 12 月死亡人數達 296 人, 使得該週死亡率超過3 個標 準差。調查其原因,亦為屬 SO₂ 之高度汚染所致 又如在民國 57 年,臺電火力發電廠建廠林口後 ,導致林口、太平、嘉寳和下福四村之防風林及稻 作相繼枯萎,受害面積高達250公頃,造成附近地 區 50 %的人口外流,其原因據呂世宗教授之研究 分析,認係為東北季風盛行之時,電廠之煙**囱排放** 物易形成動力下冲 (dynamic downwash) 作 用,加以混合層 (Mixing Depth) 鞍低, SO2 之濃度較高,經鹽份、水份反應成硫酸霧所致。通 常 SO₂ 產生硫酸 (H₂ SO₄) 之比例為2 磅之 SO₂ 可生成3磅之 H₂SO₄。其他 SO₂ 尚可損蝕建材 和汚損金屬表面等(7)。鑑於上列事實, 7 吾人深知 空氣汚染問題,影響國計民生甚鉅,而都市汚染問 題趨於嚴重,實由於都市人口之集中與工業之發展 相隨而來,不容加以忽視。臺北市乃臺灣地區之首 善, 儘管市內大工廠不多, 但小型工廠則為數不 少,尤以市郊之新莊、板橋、三重和六堵等工廠林 立,其排氣對臺北市之汚染構成嚴重威脅⁽⁸⁾,又 汽車排氣乃為都市空氣汚染之主因,而目前臺北市 汽車數量亦居全國之冠,再加上經濟之迅速發展, 導致整個臺北盆地空氣汚染問題之嚴重自不待言。 而二氧化硫為空氣汚染問題的主要課題,其汚染對 人類之呼吸器官會有相當程度的影響,過度的汚染 ,可導致呼吸器官受指,甚至死亡(表一)。 宗教授 (1974) (9) 督指出二氧化硫乃為空氣汚染之 代表指標,此乃因二氧化硫 為能源之主要廢氣, 而產量亦多之故。由呂氏等 (1975)⁽¹⁰⁾ 測析資料 比較, 本省兩中之 PH 值最低 值與 美國 紐約 州 Upton 所測之值甚近,尤其臺北地區之雨水 PH 值有低達 3.8 之記錄,可見臺北地區受二氧化硫等 之汚染相當嚴重。惟過份嚴厲的管制,將妨害工業 經濟之發展,適切而有效之管制,實為當務之急。

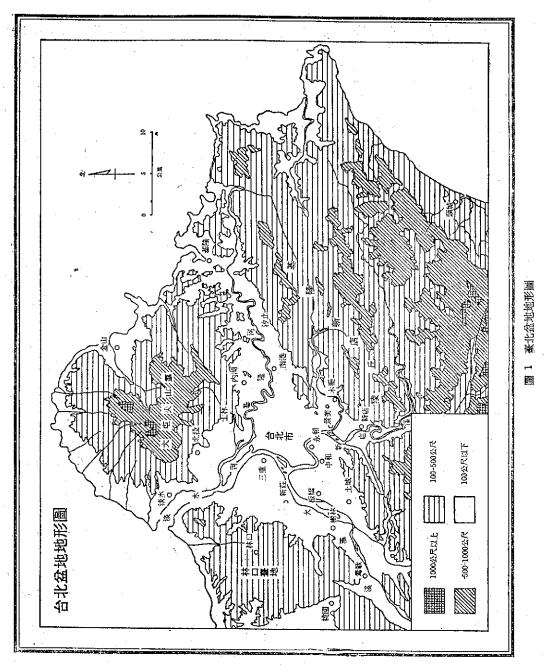
因此本文將就臺北盆地二氧化硫濃度加以評估 ,以箱式模型⁽¹¹⁾(Box Model) 為理論基礎, 配合環境品質之實測資料和各種氣象因子,利用線 性廻歸和逐步複廻歸法,導出一套有關臺北盆地二 氧化硫濃度之預測廻歸方程式,以供為權責機構制 定法令之參考和預警之指標,維護工業經濟之持續 成長和周圍環境空氣之品質,確保盆地內居民之健 康。 表一 不同濃度之二氧化硫氧體引起人體之生理反應

濃度 (ppm)	生	理	反	應
0.03~1.0	開始有知覺。	, , .		
3	很容易感覺有	ī味道。	•	
5	人體可繼續暴	、露8月	、時之最高	容許濃度。
6-12	立刻會在鼻、	喉感	國有刺激咳	嗽。
20	刺激眼睛之晕	し低濃度	ξ.o	- T
50-100	人體可繼續暴	暴露 1 月	卜時之最高	容許濃度。
400-500	立刻對生命有	百危險	立刻發生	呼吸困難。
1,350	小白鼠吸入	10 分鏡	童後即死亡	0
10,000	(不能呼吸)	數分鐘	電後發生炎	症。
資料來源:	美國衞生部:	1966 年		

環境衛生,臺灣省公共衛生教學實驗院

#### 二、臺北盆地空氣汚染之概況

臺北盆地(圖1)之空氣汚染,以臺北市為主 。臺北市位於臺北盆地中央,地勢由東南向西北傾 斜,平均高度為海拔7m,四周為山脈或丘陵環 繞,在北偏東有大屯山,西北有觀音山、五分山、 姜子寮山、土庫岳、二格山、吱山、大桶山、獅頭 山及熊頭山則由東南向西北綿亙,新店梁、基隆河 和淡水河又成為三方向之走廊,因受臺北盆地之影 響,風向有偏東傾勢,使得臺北形成特殊的風系, 從臺北之風向頻率分布亦可印證,無論那一季節均 以偏東為最多,由於特殊風系及汚染源之分布,使 本區構成特殊之汚染分布⁽¹²⁾。


空氣汚染之代表指標為二氧化硫,因此本文之 汚染分布,係採以二氧化硫含量為主體,為方便計 ,將臺北分為四大區⁽¹³⁾,略述其汚染情形。

1. 東區

臺北市東區為當時之工業區,包括松山、大安 及南港等區,紡織、化工和鋼鐵等公害工廠雜散林 立,其汚染性較强,加以此區為發展區,建設工程 亦多,其背後又為六堵工業區,因此造成嚴重的汚 染,尤以落塵之汚染為最。本區之汚染對臺北中心 區之影響亦大,尤以季風盛行時為甚。

2. 西區

本區包括雙圍、龍山等區和城中區的一部分, 汽車汚染對本區的影響最大,修建工程頻繁,食品 廠等雜散綿立,以位於臺北西部,受偏東風影響甚 大,在東北季風盛行時,汚染尤甚。因受三重、板 橋及新莊一帶之汚染源影響,夏、秋雨季浮游塵亦 多。



3. 北區

包括士林、北投及陽明山等區,住家較多,雖 亦有化工廠的存在,惟因本區山地地區相互隔阻, 樹木叢生,,汚染情形較不嚴重。

4. 南區

包括景美、木栅、新店等地,人口工廠較少, 因此汚染源亦少,其如北區山林較多,雖近年社區 不斷發展,稍有汚染,但仍不嚴重,惟因其地形特 殊,換氣速度較緩慢,如無適切管制,將來亦難免

#### 遭受嚴重汚染。

另根據一項研究⁽¹⁴⁾,臺北市一年內之空氣汚 築物,其中汽車之排放為最多,分析市區內各地汽 車排放汚染情形以中山、城中和建成區汚染情形較 為嚴重,因此汽車排氣之管制有待加强。

- 43 --

# 三、理論基礎及模型之建立

都市大氣汚染現象,雖因素複雜,然因其汚染 之嚴重性與日俱增,發展簡單合理的數學模型以闡 - 44 ---

述汚染之機構實屬必要,而近年來電子計算機之使 用,更確立了模型預測之觀念與應用之實現。

目前所提之主要都市大氣汚染模型⁽¹⁵⁾, 雖有 十數種,但可大别如下:

1.以測點所測之汚染濃度測定資料為主者。

2.以都市汚染活動源資料為主者。

前者稱為 實測濃 度模型 (Receptor-Oriented Model),後者稱汚染源活動模型(Source-Oriented Model)。其可再細分如下:

1. 實測濃度模型

(1)因不能獲得都市汚染源正確資料,假設都市區域內為一均匀之面汚染源(Uniform Area Source),並考慮適當之擴散條件以計算汚染濃度,求出與實測值相關之廻歸方程式。

(2)汚染活動不明,於濃度測定値中,求出時刻,日、星期或季節之統計趨勢。僅以濃度測定値與氣象因子,利用廻歸分析之方法來預測汚染濃度。

-2. 汚染源活動模型

(1)獲得污染源活動資料,從各個污染源或汚染區,以煙流(Plume) 擴散現象,求出下風 (Down Wind) 地表濃度,此法又稱為煙流模型 (Plume Model)。

(2)如上述,但不採煙流擴散。為適應微風或異 常氣象狀態,以吹噴 (Puff)來考慮擴散機構, 求出下風汚染濃度,此法又稱吹噴模型 (Puff Model)。

本研究所採之模型箱式模型, 即屬實測濃度模型中之污染活動不明者,且假設整個盆地為一均匀 之面污染源,以濃度之實測值與各種氣象因子,利 用廻歸分析法來預測汚染之濃度。

(一) 理論基礎

箱式模型理論,即為選取一汚染排放强度一定 之地區,將其空間以一假想箱加以隔離,來研究該 地區(即箱內)之空氣汚染情形。本模型其主要預 測之氣象因素為混合層高度、平均風速和大氣穩定 度等,如下式:

$SO_3 = Q1/2\overline{U}L^{(16)}$	(4.1)
SO2: SO2 平均濃度	Q:SO₂ 排放强度
1:都市長度	订:平均風速(地面
L:混合層高度	平均風速)

本理論之引申,即是將整個臺北盆地視為一單 位地區,而將盆地內之二氧化硫排放强度視為一定 ,再以假設箱加以隔離,來研究盆地內二氧化硫汚 染之情形。(4.1)式,吾人可假設排放强度(Q) 和都市長度(1)為定值,則可知平均濃度 SO。和 地面平均風速(订)以及混合 唇高度(L)為成反 比之關係。如此則若能預知 T 和 L,即可預測平 均汚染濃度 SO₂。

由下式可知L和最高溫度(T_x)和最低溫度 (T_m)有密切相關,故L可以日較差 ΔT(即T_x-T_m)來加以取代。

$$L = \frac{T - T_{m}}{T_{x} - T_{m}} (L_{m} - L_{n}) + L_{n}^{(17)}$$

$$L \approx \frac{1}{T_{x} - T_{m}} \quad L \approx \frac{1}{\Delta T} \qquad (4.2)$$

$$T : \text{bidiag}$$

$$T_{m}: \text{BCAB}$$

T_x:最高溫度

L_m:最大混合層高度

L_n:夜間混合層高度

L :混合層高度

如果我們能得到  $\mathbf{U}, \mathbf{T}_{x}$  和  $\mathbf{T}_{m}$ , 即可預測汚 染濃度, 惟預測汚染濃度之前, 必須先設法預測 $\mathbf{U}, \mathbf{T}_{x}$  和  $\mathbf{T}_{m}$ 。

(二) 預測模型之建立

有關  $\overline{SO_2}$ 、 $\overline{U}$ 、 $T_x$ 和  $T_m$  各項預測 因子之 選取,係以線性相關之方法求得,將於下章加以敍 述,現僅先將預測  $\overline{U}$ 、 $T_x$ 和  $T_m$  之模型先行建 立,俾能導致汚染濃度預測模型之建立。

(1)地面平均風速 订 之預測

即以 U20h,85.(-1) 和 U20h,0,(-1) , 來預測當 日之地面平均風速 ℃。

(2)最低溫度 T_m 之預測

 $T_{m} - T_{20h,85,(-1)}$ ,  $T_{14h,0,(-1)}$ 

T₂₀₁₋₈₅,(-1) : 前一日 850mb, 20 時之 溫度

T_{14b},0,(-1) : 前一日地面,14時之溫度 即以 T_{20b},85,(-1) 和 T_{14b},0,(-1) 來預測當日

(3)最高溫度  $T_x$  之預測

 $T_x \leftarrow T_{5h,0}, (T - T_D)_{20h,85,(-1)}$ 

T_{5h},0:當日地面5時之溫度

(T-T_D)2011,55,(-1):前一日 850mb, 20 時 之溫度露點差

即以 T_{5h,0} 和 (T-T_D)_{23h,65,C-1}) 來預測最 高溫度 T_x。

(4)二氧化硫平均濃度 SO: 之預測

綜合箱式模型及其引申,可建立預測模型如下:

- 45 -

 $\overline{SO_3} \leftarrow \overline{U}, \Delta T$ 

**订**:當日地面平均風速

∆T:當日之日較差

即以 び 和 ΔT 來預測二氧 化硫之平 均濃度
 透過逐步複廻歸之方法,可得二氧化硫平均濃度
 之預測複廻歸方程式:

 $\overline{SO_2} = C_0 + C_1\overline{U} + C_2\Delta T$ 

C₀:固定參數

C₁:地面平均風速之廻歸係數

C₂:日較差之廻歸係數

四、統計數學模式及資料的來源和處理

(→) 統計數學模式

本研究的數學模式主要採用逐步復廻歸法⁽¹³⁾ (Stepwise Regression),係首先由吾人所建 立的預報因子中,選出與被預報因子最高相關者, 並作F値檢驗,如最高相關因子為不顯著,則統計

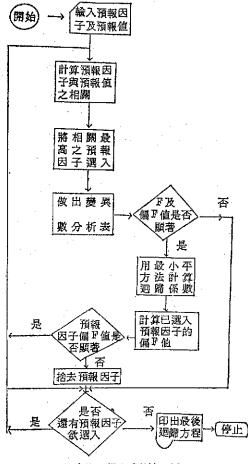



圖 2 逐步復廻歸模式的流程圖

模式無法建立,如顯著,則繼續逐步選入其他與被 預報因子最高偏相關的預報因子,惟每次因子被選 入時,均須作 F值檢驗,同時亦須再檢驗已被選入 之預報因子,因某一預報因子在前一步驟可能爲最 佳者,然由於受隨後陸續選入之預報因子影響,而 在後續步驟中成爲多餘,因此在選入新預報因子時 ,須同時對已選入者檢偏 F值之計算,若其偏 F值 不顯著,則將之捨去,此種程度繼續進行至無預報 因子被選入或捨去為止,而每一步驟中均採最小平 方法 (Least Square Method) 計算廻歸係數 (圖2)⁽¹⁹⁾。

- 廻歸方程之模式為:

$$\hat{\mathbf{Y}} = \mathbf{A}_0 + \sum_{i=1}^n \mathbf{A}_i \mathbf{X}_i$$

其中  $\hat{Y}$  為被預測因子  $\cdot$  A₀ 為固定參數  $\cdot$  A₁ 為對 應於 X₁ 之廻歸係數  $\cdot$  n 為選出預報因子的數目。

對於選擇廻歸模式中預報因子之數目,通常我 們有兩種完全相反的判斷準則。

(1)為使模式有預測作用,預報因子選入愈多愈 具可靠性。

(2)為符合簡遠的原則,則預報因子之選入愈少 愈佳。基於以上之準則,本研究有關預報因子之選 取,係事先利用線性廻歸法,再配合資料獲取之難 易加以選取,俾便達到簡速之原則,而具預測之功 效。

本研究所涉及之各種預報因子及所選取之預報 因子與上述廻歸方程模式之對應如下:

Ŷ(被預測因子): 即分別為 び、T_m、T_x 和 SO₂

X1, X2(預測因子) : 即分別為 Ū20h,85,(-1)、 Ũ₀、T20h,85,(-1)、T14h,0、T5h,0、(T-TD)20h, 85,(-1)、豆和ΔT。

然後,將以上涉及本研究之各被預測因子和預 測因子利用逐步廻歸法,分別建立最佳之 廻歸方 程。

(二) 資料的來源和處理

本文主要資料採用中央氣象局局本部(臺北市 公園路)及板橋探空站 1975-1979 之資料,並以 電子計算機加以處理。

現**៉**將本研究所實施的各種電算處理結果分述 如下:

1 線性廻歸法之處理

- 46 -

以本法先求得涉及本研究之各被預測因子和各 預測因子之線性相關,俾便為各預測因子 取捨之根 據。

(1)二氧化硫之日平均濃度 SO, 與逆溫 層高度之 相關。

本研究曾用五年資料,以電算機計算 SO₃ 和 逆溫層高度之相關,後並加以如下之限制:①逆溫 層高度<3000m。②平均風速 Ū <3m/sec。③ 五年資料改為兩年,同時將一年分成四季或三季( 如:11月、12月、1月/2月、3月、4月/5月 、6月、7月/8月、9月、10月四季或12月、1 月、2月、3月/4月、5月、10月、11月/6月 、7月、8月、9月三季)。④把一天分成三段, 即當日 19 時到翌日7時(19h/7h (+n)、8時到 12 時(8h(+1)/12h(+1))及13時到18時(13h(+1)/ 18h(+1))。其計算結果顯示,逆溫層高度和SO2之 相關顯著(表二)。

線 性相關係 數 問 季節 日 數	19h / 7h (+1)	8h/12h (+1) (+1)	19h/18h (+1) (+1)
2月、3月、4月/59日	- 0.2801	- 0.2059	- 0.2664
5月、6月、7月/30日	- 0.0309	- 0.0142	+ 0,0082
8月、9月、10月/18日	0.2913	0.1733	0.4020
11月、12月、1月/ 54 日	- 0.3557	- 0.2363	- 0.0965
12月、1月、2月/66日	- 0.4056	0.3568	-0.2331
12月、1月、2月、3月/83日	- 0.3936	- 0.3379	-0.2552

表二 1978-1979 逆溫層高度和 SO, 之相關

(2) ①、T_m、T_x 與其預報 因子之相關

①被預測因子----地面平均風速订

被預測因子——地面平均風速 Ū						
相關 係 數 預 測 因 子	<u> </u>	<u> </u>	<u>- ′76-′78</u> 6. 7. 8. 9 月 358 日			
U2011,855,(-1)	0.1406	0.2068	0,4430			
U2011, 0,(-1)	0.3867	0.4381	0,1752			
相關 年 份 季 節	<u>/78</u>	^{/78}	^{/78}			
預 測 因 子	1.2.3.12月 119 日	4.5.10.11月 119 日	6.7.8.9 月 120 日			
U201257(-1)	0.0676	0.2337	0.6112			
U20 <b>h</b> ,0, (-1)	0.3414	0.4858				

表三 Ū 與其預測因子之相關

#### 47 -

# ②被預測因子——最低溫度 T_m

		6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
被預測因子——最低溫度 $\mathbf{T}_{\mathbf{m}}$					
相 關 係 數	⁷⁷⁶⁻⁷⁷⁸	<u>′76-′78</u>			
預 測 因 子	1.2.3.12月 361 日	<u>4.510.11月</u> 362 日			
T _{201,85,(-1)}	0.7610	0 7984	0.6761		
T _{14h} , ₀₊₍₋₁₎	0.4065	0.7588	0.5768		
年 份 季 節 相 關 係 數 預 測 因 子	^{/78} 1.2.3.12月 ¹¹⁹ 日	/78 4.5.10.11月 119 日	· <u>/78</u> 6.7.8.9 月 120 日		
T _{201 :5} , (-1)	0.7648	0.7365	0.5461		
T _{14h} , ₀₁₍₋₁₎	0.3987	0.7296	0.5386		

表四 Tm 與其預測因子之相關

③被預測因子——最高溫度 T_x

表五 T_x 與其預測因子之相關

被預測因子——最高溫度 T _x					
相關係數預測因子		<u>′75-′78</u> <u>4. 5.11.12月</u> 362 日	<u>- '72-'78</u> 6. 7. 8. 9 月 363 日		
$(T-T_{D})_{30h,65,(-1)}$ $T_{5h,0}$	0.2549 0.4532	0.1999 0.7569	0.3245 0.4530		
相 關 係 數 預 測 因 子	⁷⁷⁸ 1.2.3.12月 119日	-	· <u>′78</u> 6. 7. 8. 9 月 120 日		
(T-T _D ) _{20bi85,(-1)} T _{5bi0}	0.3677 0.6246	0 2264 0.7078	0.1802 0.3197		

④被預測因子——二氧化硫平均濃度 **SO**₂

表大 SOs 與其預測因子之相關

	被預測因子——二氧化硫之	日平均濃度 SOg	a Aragana ang ang ang ang ang ang ang ang an
相關係數預測因子	· ⁷⁸ 1.2.3.12月 121 日	· <u>78</u> <u>4. 5.10.11月</u> 122 日	⁷⁷⁸ 6.7.8.9 月 ¹²² 日
Ū	0.4253	0.3054	0.4784
۵ <b>T</b>	0.3425	0,1999	0,0867

- 48 -

以上兩表為以電算機分别計算之 **U**、**T**_m、**T**_x 和 **SO**₂ 等與其預測因子的相關係數,其結果顯示 大部均具有良好之相關,因之,吾人乃決定選取上 列之各預測因子,利用逐步複廻歸法,以建立有效 之預測複廻歸方程式。

2 逐步複廻歸法之處理——

在預測因子選取後, 吾人即將各被預測因子( $\overline{U}, T_m, T_x 和 \overline{SO_2}$ )其預測因子, 以逐步複迴歸法, 利用電子計算機加以處理, 所得之結果如下:

(1)被預測之因子——地面平均風速 び

表七 Ū	之複廻歸方程式及其複相關係數
------	----------------

季     節       資料年份	復相關 係 數	複	
1.2.3.12月 776-778	0.4128	$\bar{\mathbf{U}} = 1.7783 + 0.04858 \times \mathbf{U}_{20h,85}(-i) + 0.2864 \times \mathbf{U}_{20h,0}(-i)$	4.1
′78 ,	0,3621	$\tilde{U} = 1.8243 + 0.04288900 \times U_{20h,85}, (-1) + 0.2540 \times U_{20h,0}, (-1)$	4.2
4.5.10.11 月 <i>'</i> 76-'78	0.4618	$\bar{U} = 1.6674 + 0.0397 \times U_{20h,86}(-1) + 0.3550 \times U_{20h,0}(-1)$	4. 3
<b>′7</b> 8	0.5053	$\bar{U} = 1.6674 + 0.0427 \times U_{20h,86},(-1) + 0.3889 \times U_{20h,0},(-1)$	4.4
6.7.8.9 月 ⁷⁷⁶⁻¹⁷⁸	0.4503	$\bar{U} = 1.8699 \pm 0.0975 \times U_{20h,85}(-1) \pm 0.0212 \times U_{20h,0}(-1)$	4.5
'78	0.7105	$\bar{U} = 1.2288 + 0.0974 \times U_{20h,85,(-1)} + 0.3354 \times U_{20h,0,(-1)}$	4.6

(2)被預測之因子——最低溫度 T_m

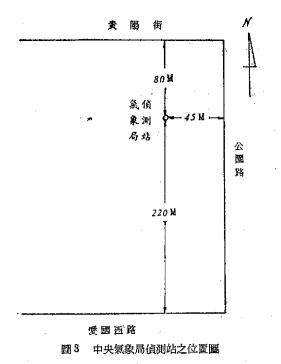
表八 Tm 之復廻歸方程式及其復相關係數

<u>季</u> 節 資料年份	複相關 係 數	複 廻 歸 方 程 T _m =A ₀ '+A ₁ '×T _{20h,85,(-1)} +A ₂ '×T _{14h,90,(-1)}	乏
1. 2. 3. 12 月 ⁷⁶⁻⁷⁸	0.7617	$\mathbf{T}_{m} = 9.0641 + 0.5269 \times \mathbf{T}_{20h, 85.(-1)} + 0.0186 \times \mathbf{T}_{14h, 0, (-1)}$	4.7
/78	0.7684	$T_m = 9.2180 + 0.5308 \times T_{20h;65},(-1)$	4.8
4.5.10.11 月 76-778	0.8159	$T_m = 8.5100 + 0.3915 \times T_{20h,85}$ (-1) $+ 0.2326 \times T_{14h,0}$ (-1)	4.9
178	0.7765	$T_m = 9.0356 + 0.2912 \times T_{20b;65,(-1)} + 0.2763 \times T_{14b:0,(-1)}$	4. 10
6:7.8:9 月 176-178	0.7183	$T_{m} = 13.4127 + 0.3884 \times T_{20h;85;(-1)} + 0.1251 \times T_{14h;0;(-1)}$	4, 11
178	0 6031	$\mathbf{T}_{m} = 15.4154 + 0.2660 \times \mathbf{T}_{20\text{h},\text{45},(-1)} + 0.1449 \times \mathbf{T}_{14\text{h},0,(-1)}$	4.12

- 49 -

(3)被預測之因子----最高溫度 T_x

	·	表九 T _x 之複廻歸方程式及復相關係數	
<u>季</u> 節 資料年份	│ 複相關 [,] │ 係 _ 數	複 廻 歸 方 程 式 T _x =A ₀ "'+A ₁ "×(T-T _D ) _{20h.65,(-1)} +A ₂ "×T _{5h,0}	
1.2.3.12月 1.76-178	0.5029	$T_x = 7.3571 + 0.3612 \times (T - T_D)_{20h,055}(-1) + 0.8380 \times T_{5h;0}$	<b>4.</b> 13
78	0.7157	$T_x = 5.6275 + 0.3991 \times (T - T_D)_{20h,35,(-1)} + 0.9183 \times T_{5h,0}$	4.14
4. <b>5.10.11</b> 月 476-478	0.7555	$T_x = 3.6611 + 0.2239 \times (T - T_D)_{20h,85j(-1)} + 1.0848 \times T_{5h,0}$	4. 15
<b>'</b> 78	0.7382	$T_x = 4.2561 + 0.2936 \times (T - T_D)_{20he95,(-1)} + 1.0159 \times T_{3h,0}$	4.16
b.7.8.9 月 - 76 78	0.5083	$T_x = 10.5874 + 0.2381 \times (T - T_D)_{20h,85,(-1)} + 0.8488 \times T_{5h,0}$	4.17
78	0.3323	$T_x = 11.9372 + 0.8274 \times (T - T_D)_{200,188,(-1)} + 0.1343 \times T_{5h},0$	4,18
(4)被預測之	因子——二氧	图化硫平均濃度 SO2 表十 SO2 之複廻歸方程式與其複相關係數	
<u>季</u> 節 資料年份	復相關 係 數	複 狸 歸 方 程 式 SO ₂ =C ₀ +C ₁ ×Ū+C ₁ ×ΔT	
. 2. 3. 12 月 176-778	0.4119	$\overline{SO_2} = 3.7590 - 0.3848 \times \overline{U} + 0.1070 \times \Delta T$	4.19
<b>*7</b> 7– <b>*</b> 78	0.4492	$\overline{SO_2} = 4.2469 - 0.4295 \times \overline{U} + 0.1246 \times \Delta T$	4.20
178	0,5062	$\overline{SO_2} = 4.8632 - 0.4726 \times \overline{U} + 0.1297 \times \Delta T$	4.21
.5.10.11 月 176-178	0.1747	$\overline{SO_2} = 4.1220 - 0.2290 \times \overline{U}$	4, 22
177-178	0.1965	$\overline{SO_2} = 5.1225 - 0.3013 \times \overline{U} + 0.0599 \times \Delta T$	4.23
	1		


			*. 40
<b>⁄7</b> 8	0.3322	$\overline{SO_2} = 5.3524 - 0.2945 \times \overline{U} + 0.0027 \times \Delta T$	4. 24
6.7.8.9 月 176-178	0 3020	$\overline{SO_2} = 2.8200 - 0.3061 \times \overline{U} + 0.0382 \times \Delta T$	·
<b>′7</b> 7–′78	0.3736	$\overline{SO_2} = 4.3745 - 0.5198 \times \overline{U} + 0.0196 \times \Delta T$	
<b>'7</b> 8	0,4806	<u>50</u> ₂ =5.5677-0.5359×Ū+0.0572×∆T	

-- 50 ---

#### 五、綜合分析和討論

(一)實測資料之統計分析

本文使用之二氧化硫濃度實測資料,係採自民 國六十四年至民國六十八年計五年中央氣象局(臺 北市公園路64號,如圖3)值測站測得之逐時濃度 。



1. 1979年各月 SO₂ 之逐時平均濃度變化( 圖 4)

即將民國六十八年全年每日同一小時之二氧化 硫濃度實測值求取其月平均值後,加以統計分析。 其結果顯示,平均濃度變化曲線呈變峯型,即兩高 峯和兩低峯。一般為上午6時左右即開始迅速增加 ,從8時起呈顯著增加,第一個高峯出現時間,大 部分在上午10-11時(最大值為 7.8 pphm,在6 月)。惟七、八兩月高峯出現在 8-9時,而7時起 呈顯著增加。第二個高峯(次高值)大部出現在下 午5-6時間,而七、八兩月延至7時出現。一般言 之,入院以後之變化不大(尤以一月、二月、十月 、十一月和十二月的第二高峯不顯著),至晚上11 -12 時始下降。第一個低峯多出現在清晨 3-5時( 最低值為 2.3 pphm在11月),第二個低峯(次低 值),則出現在中午以後2至3小時。

臺北盆地主要之二氧化硫排放為汽車,其次為

一般家庭和工廠。在6時以前的2-3小時,城市活 動處於完全停頓狀態,因而出現第一個低峯。6時 以後,乃因城市開始活動,又日出後地面溫度增高 ,於是近地面亂流⁽²⁰⁾形成以後,破壞逆溫層次, 等到此亂流層頂抵違汚染氣層高度,於是此汚染空 氣隨渦流而降至地面,導致二氧化硫濃度的訊速上 升,在1-2小時後,逆溫層完全破壞,亂流層轉而 擴展至汚染層之上時,此時城市之活動亦已漸次達 到高峯時刻,因而出現第一個高峯(上午9時至11 時),惟七、八兩月的第一次高峯提前在8-9時出 現,或由於日出較早,人們活動時間提前之故。隨 後由於地面的堵溫混合層的上升和午間活動停頓, 而出現第二次低峯(午後23小時),有時甚而有 較第一次低峯為低(如6月),此乃因晩間逆溫的關 係。過了下午 2、3 時則又緩慢爬升,至下午 5-6 時,由於下班、放學時,交通量又達尖峰,因而達 到第二個高峯,惟混合層漸次降低,故而入晚後之 變化不大,直到晚上12時城市活動幾呈停頓,方始 輕微下降。

2. 1979年全年 SO₂ 逐時平均濃度變化(圖
 5)

即將民國六十八年,每日同一小時之實測值, 求取其年平均值,來加以統計分析。其結果顯示和 吾人的分析相似,亦是變峯型。第一個低峰在上午 4-5時(最低值為3.5 pphm),第一個高峯在9-11 時(最高值為5.5 pphm,在11時),午後2-3時 出現第二個低峰(次低值為4.6 pphm),入曉後 變化不大,直到晚間12時始經激下降。本分析和圖 4 之分析不謀而合。

3. 1975-1979 年五年 SO₂ 之逐月平均濃度 變化 (圖 6)

由6圖和表十一,顯示8月有一最低值,2月 有一次低值,4-6月有一最高值,而12月有一次高 值。4-6月之最高值,或因混合層低(588m),平 均換氣指數小⁽³¹⁾(2176m²/sec)和其儘靠馬路(公 園路和貴陽街)部分,吹東風或偏東風,因而導致 高度汚染。8月最低值的產生,或因混合層高度較 高(750m-675m),吹 S\$E-NW 風,且上風汚 染源(愛國西路)較遠和颱風横掃之影響。並附 1975-1979年之各年 SO₂ 逐月平均濃度變化(圖 7)供参考。

4. 1979-1975 年五年 SO₂ 之逐年平均濃度
 變化(圖8)

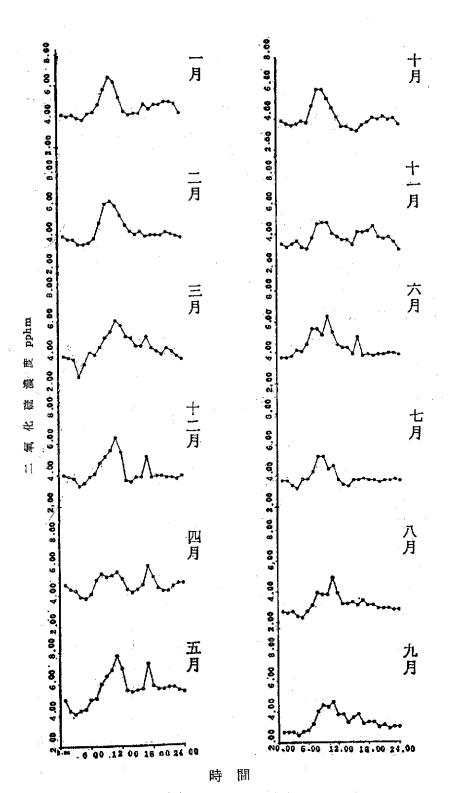
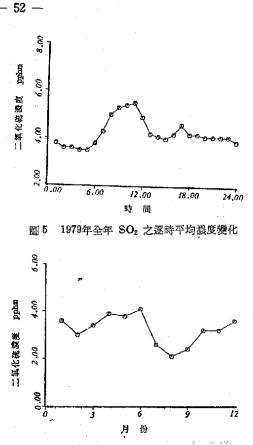
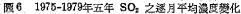
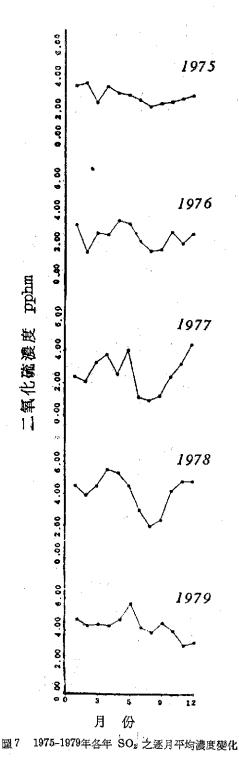




圖 4 1979年各月 SO2 之逐時平均濃度變化

- 51 --







圖 8 與表十一顯示,民國六十四年和六十六年 年平均值相同,六十五年則略低,六十六年以後則 年年上升至六十八年達 4.3 pphm,此乃因近年來 經濟繁榮,工業進步,能源(如石化燃料、煤)消 耗日增,而導致二氧化硫排放量的升高。

(二預測廻歸方程式

有關上章電算結果所獲得之廻歸方程(①、T_m、T_x和 <del>SO₂</del>),由於所採用之資料年數和季節的 不同,而導致不同的相關程度,似應加以取捨,俾 為有效之預測,茲識將各被預測之廻歸方程略爲論 述如下:

1. 被預測因子——地面平均風速

上列迴歸方程之選取,係以複相關係數為其依 據由前章之廻歸方程式中加以選入,其等顯示地面 平均風速受到 $U_{20h,0,(-1)}$ 之影響較大。其預測之結 果如圖9,誤差分別為方程式 $5.1:\Sigma$ ] $\mathbf{T}^*-\mathbf{T}$ ]/N= 1.0m/Sec 方程式 $5.2:\Sigma$ ] $\mathbf{T}^*-\mathbf{T}$ ]/N=0.9 m/sec, 方程式 $5.3:\Sigma$ ] $\mathbf{T}^*-\mathbf{T}$ ]N=0.8/sec,其中 $\mathbf{T}^*$ 為預 測之地面平均風速,**T**為地面平均風速,而N 為預 測之個數。



# 2. 被預測因子——最低溫度 Tm

前章之廻歸方程中,顯示利用三年之資料,其 所獲之相關較一年者爲佳,上列之方程式均具有良 好的相關,也因此得以獲致較佳之預測結果,如

- 53 -

表十一 1975-1979 年 SO2 平均濃度,各年之逐月平均,年平均及五年逐月平均

單位:pphm

月 年	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	12.	平均
<b>′</b> 75	3,3	<b>3</b> .5	2.3	8.3	2,9	2.8	25	2,1	2,3	2,4	2,6	2.8	2.7
<b>′</b> 76	3,1	1.4	2.6	2.5	3.4	8,2	2,1	1,5	1.6	2.7	2,0	2.6	24
177	2.4	2.1	3,3	38	2.6	4.1	1.2	1.0	1.3	2.5	3.3	<b>4</b> .5	2.7
178	4.5	3.9	4.5	5,5	5,9	4,5	3,0	2,0	2,4	4,2	4.8	4.8	4,1
/79	4.7	4,3	4,4	4,3	4.7	5.7	4,2	3,9	4,5	4.0	3.1	3,3	4,3
平 均	3.6	3.0	3.4	3.9	3.8	4.1	2.6	2,1	2.4	3.2	32	3,6	3,2

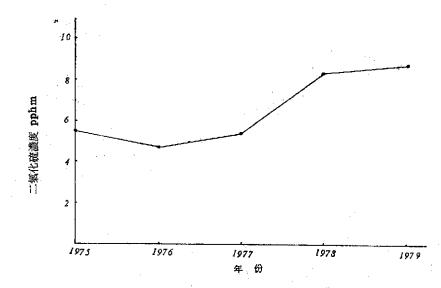



圖 8 1975-1979 年五年 SO₂ 之逐年平均濃度變化

表十二	① 之預測複廻歸方與式	1
-----	-------------	---

季節	· 複相關係數	複 廻 歸 方 程 式 Ū=A ₀ +A ₁ ×U _{20h, 85,(-1)} +A ₂ ×U _{20h, 97} (-1)
資料年份	植相關係數	U-A ₀ +A ₁ XU _{20h} , 25,(-1)+A ₂ XU _{20h} , 9(-1) 單位:m/seC
1.2.3.12.月 /76-/78	0,4123	$\bar{U} = 1.7783 + 0.0785 \times U_{20}, \ _{85(-1)} + 0.2864 \times U_{20h, 0,(-1)} 5.1$
4.5.10.11.月 ⁷ 8	0.5058	$\vec{U} = 1.6674 + 0.0427 \times U_{20}, s_{55}(-1) + 0.3889 \times U_{20h}, o_{1}(-1)$ 5.2
6.7.8.9.月 ⁷ 78	0.7105	$\bar{\mathbf{U}} = 1.2288 + 0.0974 \times \mathbf{U}_{20h}, \ _{35,(-1)} + 0.3354 \times \mathbf{U}_{20h}, \ _{0,(-1)}$ 5.3



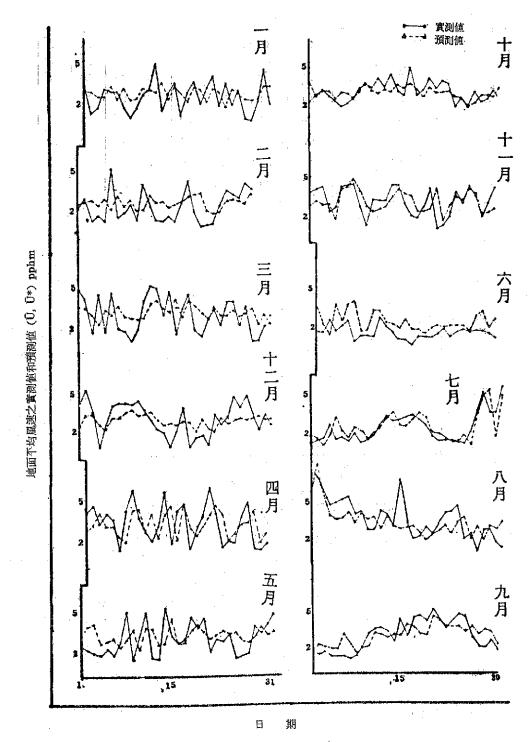


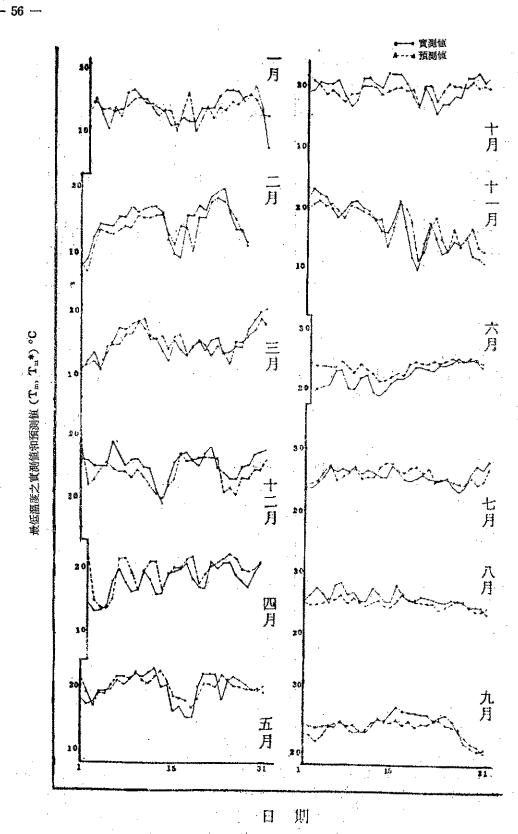

圖 9 1979年各月地面平均風速之實測值和預測値之日變化

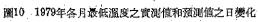
- 55 ·

季節	複相關係數	複 逾 歸 方 程 式 T _m =Á ₀ ′+A ₁ ′×T _{20h} , _{\$5/(-1)} +A ₂ ′×T _{14h} , ₉₍₋₁₎ .
資料年份	1282 4711 1944 1945 1984	里 單位:°C
1.2.3.12.月 1.76-178	0.7617	$T_{m} = 9.0641 - 0.5269 \times T_{20h},  s_{5,(-1)} + 0.0186 \times T_{14h},  o_{1(-1)} = 5.4$
4.5.10.11. 月 176-178	0.8159	$T_m = 8.5100 - 0.3915 \times T_{20h, 85,(-1)} + 0.2326 \times T_{14h, 0,(-1)}$ 5.5
6.7.8.9. 月* 176-178	0.7183	$T_m = 13.4127 - 0.3884 \times T_{20h}, \ _{85,(-1)} + 0.1251 \times T_{14h}, \ _{0,(-1)} 5.6$

表十三 T_m 之預測複廻歸方程式

Image: Solar State of the 
為預測之最低溫度,T_m 為最低溫度,而N為預測 的個數。


3. 被預測因子——最高溫度 T.


表十四 T_x 之預測廻歸方程式

	· · · ·	
季節	複相關係數	複 廻 歸 方 程 式 T _x =A ₀ "+A ₁ "×(T-T ₀ ) 2011, 85(-1) +A ₂ "×
資料年份	1292 1414 1911 1277 1953	T ₅ h, 0 單位:°C
1.2.3.12.月 178	0.7157	$T_x = 5.6275 + 0.3991 \times (T - T_D)_{20h}, \ _{85,(-1)} + 0.9183 \times T_{5h}, \ _0 \qquad 5.7$
4.5.10.11.月 176-178	0.7555	$T_x = 3.6114 + 0.2239 \times (T - T_D)_{20h}, 885,(-1) + 1.0848 \times T_{5h}, 0 5.8$
6.7·8.9·月 ·7678	0,5083	$T_x = 10.5874 + 0.2381 \times (T - T_D)_{20h}, s5(-1) + 0.8488 \times T_{5h}, 0 5.9$

上列之廻歸方程,亦為以相關係數為依據,自 上章的廻歸方程中加以選取。 方程式顯示  $T_x$  之 預測值受  $T_{5h,0}$  之影響較大,尤以方程式 5.8 為然 ,惟亦稍受  $(T-T_D)_{20h,85,(-1)}$  之影響。 其預報 結果如圖 11,其誤差分別為方程式 5.7: $\Sigma$ ! $T_x$ *- T_x|/N=2.6C, 方程式 5.8:Σ|T_x*-T_x|/N=2.5°C, 方程式 5.9:Σ|T_x*-T_x|/N=1.1°C,其
 中 T_x* 為預測之最高溫度, T_x 為最高溫度, 而
 N為預測的個數。

4. 被預測因子——二氧化硫平均濃度 SO2





÷

- 57 -

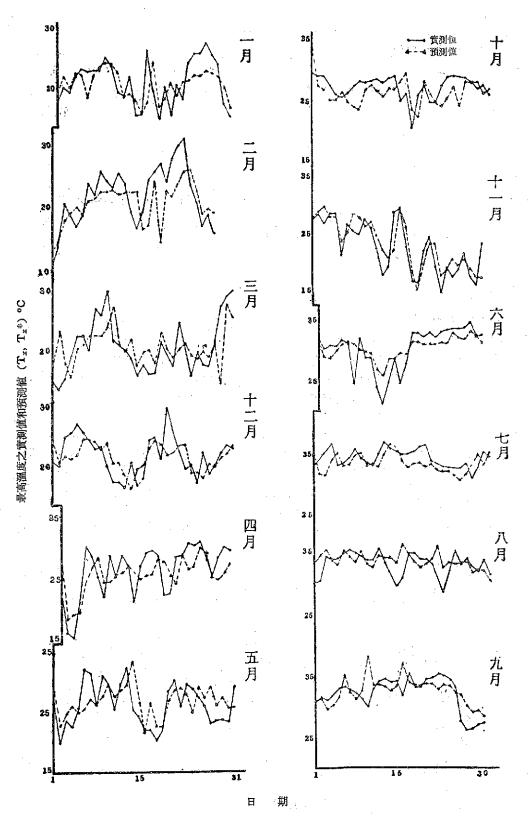



圖11~1979年各月最高溫度之實測值和預測值之日變化。

表十五 SO2 之預測廻歸方程式

季 節	複相關係數	複 廻 歸 方 程 式 ŠO₂==C₀+C₁×Ü+C₂×ΔT
資料 年份		單位:pphn
1.2.3.12 月 ⁷ 78	0.5062	$\overline{SO}_{2} = 4.8832 - 0.4726 \times \overline{U} + 0.1297 \times \Delta T$ 5.10
4.5.10.11 月 ⁷⁷⁸	0.3332	$\overline{SO_{2}}$ =5.3524-0.2945× $\overline{U}$ +0.0027× $\Delta T$ 5.11
6.7.8.9.月 <i>1</i> 78 [*]	0.4806	$\overline{SO_2} = 4.3745 - 0.5198 \times \overline{U} + 0.0196 \times \Delta T$ 5.12

在上章中曾分别以 '76-'78, '77-'78 和 '78 之 資料求取廻歸方程式,結果顯示以僅 '78 一年的資 料所求取之預測方程有較好的相關,其理由為二氧 化硫之濃度每年均有變化(趨於增加),因此使用 一年的資料,似應較為合理。分析上列之廻歸方程 ,可知二氧化硫之平均濃度受風速之影響較大。

有關以上四組預測廻歸方程中 **5、T_m、T_x** 部分,限於時間,本研究僅對其做粗略之論述,而 將預測結果顯示於附圖中,不擬做詳細之研討。至 於 **SO**。乃本文之主題,因此作者將以 **5、T_m、 T_x**等預測方程所得之預測值以及實測值分别代入 方程式 5.10,而以民國六十八年一月爲期,加以詳 細分析探討。本文檢驗預測方程使用之所有資料均 為民國六十八年全年的實測資料。

三二氧化硫濃度預測結果之析論

預測結果如圖12,其中分別包含實測值和預測 值代入預測方程 5.10 所獲之曲線以及實測值曲線 。其誤差分別為:

 1.Σ|SO₂'-SO₂|/N=0.91 pphm, N=30日
 2.Σ|SO₂*-SO₂|/N=0.82 pphm, N=30日
 3.Σ|SO₂*-SO₂'|/N=0.67 pphm, N=30日
 其中 SO₂': 資測値代入預測方程所得之平 均濃度。

SO₂*:預測值代入預測方程所得之平

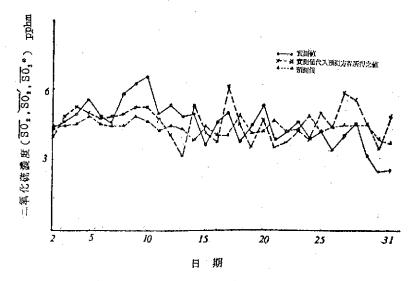



圖12 1979年1月份 SO2, SO2 和 SO3* 值之日變化

- 59 -

均濃度。  $\overline{SO_2}$  : 實測之平均濃度値 N:預測之個數  $\overline{SO_2'} \cdot \overline{SO_2}*$  對  $\overline{SO_2}$  之標準偏差  $1.S_{1,8} = \sqrt{\Sigma(\overline{SO_2} - \overline{SO_2'})^2/N} = 1.032$  pphm  $2.S_{3\times 3} = \sqrt{\Sigma(\overline{SO_2} - \overline{SO_2})^2/N} = 1.042$  pphm

其中 S_{1,2}: <u>SO</u>2' 對 <u>SO</u>2 之標準偏差 S_{2,3}: <u>SO</u>2* 對 <u>SO</u>2 之標準偏差

圖12.中顯示,實測值和預測值分别代入預報方 程所得之曲線和實測值變化曲線大致傾向符合,惟 前者所得之曲線更類似實測值變化曲線。

現ia再就圖¹²,進一步加以析論。1979年1月 10日,曲線變化傾向符合,惟預測値低28%(即 1.9 pphm),其原因可能由於當天的逆溫層高度 甚低(430m),再加上預測風速偏高,日較差預測値 ΔT*偏低,而導致二氧化硫平均濃度預測値SO₂* 偏低。由方程式5.10,二氧化硫平均濃度之預測値 SO₂*和地面平均風速之預測値 ℃*成反比,和目 較差之預測値 ΔT*成正比。如以實測値代入預測 方程所得之曲線,則將更近實測曲線。本日之濃度 甚高,亦受逆溫層之影響頗甚。1979年1月17日預 測値偏低,主因預測風速偏高1.7m/sec,ΔT*偏

低 9.6°C,由此二項本應造成更高的汚染,惟因該 天風向為 ESE 或可稀釋不少的濃度,而使預測值 和實測值之差降為 0.9 pphm。1月18日預測曲線 和實測曲線相反,預測值偏高 1.2 pphm, ΔT*偏 高,Ū* 偏低,再加上降水 (2.3 m. m.) 影響之故 ,因雨水的冲洗作用,常導致預測値的偏高。1月 20日預測值偏低 1.1 pphm,受風速預測值偏高之 影響甚大。吾人綜合析論1979年1月份(圖13.), 可發現一種現象,即 $(\overline{SO_2}, \overline{SO_2}', SO_2^*)$ 圖中從1 月17日至1月25日。其預測曲線似乎較實測曲線落 後一日,而此種現象亦出現於(①, ①*)圖中,且 極顯著,可見地面平均風速對平均濃度之影響甚大 , 其理由可由 **SO**₂ 之預測複廻歸方程式之廻歸係 數加以印證,如以 5.10 式言,地面平均風速 1m/ sec 對平均濃度的影響,相當於 △T=3.64°C 所 造成之影響。

### 六、結 論

有關臺北盆地二氧化硫汚染的程度,1979年之 實測資料分析顯示 , 一小時值之年平均值為 4.3 pphm,一小時值最大為 28.3 pphm,最小值為 1.8 pphm,如與中華民國臺灣區地面環境空氣 品質標準(表十六)比較,而以路旁和偵測站之濃 度比為 5-10⁽²²⁾倍之調整,則均超過空氣品質標

表十六 中華民國臺灣地區環境空氣品質標準

一、懸浮微粒:24小時値之各平均値須	在表列之限值以	下,且全年間須符合	下列各條件:
(一不包括粒徑大於 10μm 之粗粒:	時之限値(單位	µg/Nm ⁸ )	
(1)月平均值 一般地區:210至4			
工業地區:240			
(2)年平均德 一般地區:140			
工業地區:160			
囗包括粒徑大於 10µm 之粗粒時。	<b>之限値(單位 μg</b>	/Nm ³ )	
(1)月平均值 一般地區:260至			
工業地區:290			
(2)年平均值 一般地區: 270			
工業地區:190			
二、硫氧化物(SO _x )			
(→硫氧化物濃度:1小時値之各平	均值須在表列之	限值以下,且全年間須	〔符合下列各條件(單位 ppm))
	一般地區	1	
(1)1小時值	0.3	0,5	
(2)1小時値之日平均値	0,1	0,15	
(3)1小時値之年平均值	0.05	0.075	
來源:莊進源,1976,臺灣地區空	2氣汚染之防制。		
, , ,			

- 60 -

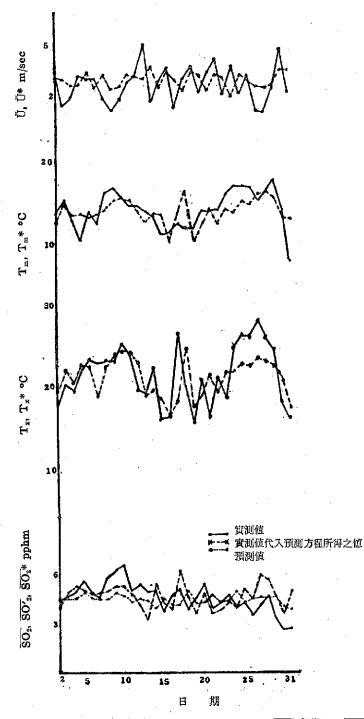



圖13 1979年1月之 Ū 與 Ū*, T_n 與 T_n*, T_x 與 T_x* 以及 <del>SO₂</del>, SO₂ 與 <del>SO₂</del>* 値之日變化

- 61 -

準,何況本研究之採樣並非臺北汚染嚴重之地點, 可能有些地區,雖不經路旁和偵測站濃度比之調整 ,而早超過標準,因此臺北盆地二氧化硫汚染之嚴 重性,實已到達刻不容緩而有待積極有效的管制。

都市二氧化硫濃度之預測,其主要目標為定量 之預測,預報二十四小時的汚染傾向。本研究之預 測模型, 即提供了簡速汚染濃度預測方法,對環境 之評估、空氣品質之維護極有助益,如經下列修正 調整,則對濃度預測值之精確度和應用之有效性將 有顯著之增長。

(-)預測模型之改進

 1.預測模型中之預測因子,如能再做適度的選入(如日照時間、風向、逆溫層、和其他層面溫度、溫度露點差、風速,以及排除降雨之因素),將 使預測之結果有所改進

2.本研究為日平均濃度之預測,有關每日高低 峰濃度之預測,可参考1979年各月 SO2 之逐時平 均濃度變化(圖4)和1979年每年 SO2 之逐時平 均濃度變化(圖5),則可預估高低峰濃度。

3.模擬本預測模型,可進一步發展成三時段( 即將一天分成8時/12時、13時/18時、19時/7時)之預測廻歸方程,或甚至逐時之預測廻歸方程,或甚至逐時之預測廻歸方程 式。

4.各代表性地點測站,可以已有之預測複廻歸 方程(氣象局局本部實測資料所發表者)為基礎, 加上其實測資料和氣象局局本部者之比較和調整, 預估其汚染濃度。

(二)檢 討

1. 技術性方面

(1)廣設具有代表性之偵測站,包括風向、風速 之測定,從而形成偵測網。俾能發展更精確有效之 預測廻歸方程。

(2)每日至少三次探空報告(8時、12時和20時),伸便分析氣象因子之垂直剖面變化。

2.綜合性方面

(1)空氣汚染及環境保護法之制定。

(2)加强管制汽車品質:制訂一套完整管制標準 ,並逐年修正提高,以防止汚染。(汽車排氣為都 市空氣汚染的主因。)

(3) 責成中油公司儘速全面供應低硫燃料。

(4)授權專責機橫,建立中央監視警報系統,模 擬德國魯爾區⁽²³⁾,當氣象當局預測二氧化硫之 APP (AIR POLLUTION POTENTIAL) 達 1,000 µg/m³ (0.38 ppm),該系統有權發佈警報,採取緊急措施,要求電廠、工廠將燃料控制到 最低含硫量,或甚至停止。在危險期間,焚化爐或 將停止使用,城市或宣布停止使用私人汽車,僅救 護車、警車和大衆交通工具准許行駛街道。或模擬 美國加州,依據其大氣汚染警報規定 (24),二氧化 硫將植物有害濃度每小時 100 pphm, 或連續 8 小時平均 30 pphm,對人類之危險濃度為 500 pphm 以上。落杉磯規定 300 pphm 為第一警 報,500 pphm 為第二警報,1000 pphm 為第 3 警報標準。當任何地區,二氧化硫濃度到達上述 標準含量時,汚染管制中心即發出警報,有關汚染 源即應減少汚染物之排放,以確保居民之安全。

(5)如尙無專責機構之授權以採取緊急强制措施 ,則可於周圍空氣品質轉趨惡劣時,由市政或有關 單位,透過大衆廣播系統,呼籲居民暫時留置室內 ,或為車輛改道行駛之建識。

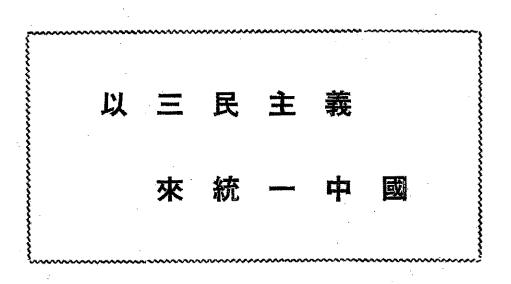
#### **參 考 文 獻**

- (1) 呂世宗等,1974,臺北市大氣汚染預測模型 之研究,氣象學報第二十卷第二期,pp.19 -30。
- (2) 呂世宗等,1980,臺灣電力公司蘇澳火力電 廠廠址對環境空氣品質影響之評估 p.3。
- (3) 行政院農業發展委員會,臺灣省衞生試驗所 等,1981,聯合報臺北訊。
- (4) WILFRID BACH, 1972, ATMOSPH-ERIC POLLUTION, Mc Graw-Hill, Inc. p. 5,
- (5) M. L. Weatherlay, 1978, Estimates of Smoke and Sulphurs Dioxide Pollution From Fuel Combustion in the United Kingdom for the Year 1976-1977, CLEAN AIR Vol. 9 No. p. 11.

(6) Michael J. Gittins, MEHA, HARSH, MinstF, 1978, the Effects of Air Pollution, CLEAN AIR, Vol. 8. No. 28 pp. 28-29.

WILFRID BACH, 1972, ATMOSPH-ERIC POLLUTION, Mc Graw-Hill, Inc, pp. 42-48.

HARRY HEIMANN, M. D. 1968,


-62 -

EFFECTS ON HUMAN HEALTH AIR POLLTION, p. 180.

- Michael J. Gittins, MEHA. HARSH, MimstF, 1978, The effects of Air Pollution, CLEAN AIR, Vol. 8. No. 28 pp. 26-27
- (8) 呂世宗等,1974,臺北市大氣汚染預測模型 之研究,氣象學報第二十卷第二期,p.20.
- (9) 呂世宗等,1974,臺北市大氣汚染預測模型 之研究,氣象學報第二十卷第二期,p.21.
- (10) 呂世宗等,1975,大氣汚染對臺灣地區雨水 PH 値之影響,大氣科學第二期,p.72.
- (1) 横山表之等,1978,環境アセスソント手法 入門,才一ム社,p. 61.
- (12) 呂世宗,1974,臺北市大氣汚染預測模型之 研究,氣象學報第二〇卷第二期,p.21.
- (13) 呂世宗,1974,臺北市大氣汚染預測模型之
   研究,氣象學報第二十卷第二期, pp. 21 22.
- (14) 中央社電,1981,2月18日電。
- (15) 呂世宗等,1974,臺北市大氣汚染預測模型 之研究,氣象學報第二十卷第二期,

22-23.

- (16) 呂世宗,1980,大氣汚染之決定性氣象因素 與其預報,中國文化大學理學院氣象系, p. 49,
- (17) ,野本眞一等,1976,大氣汚染氣象預報指針 ,第三章,p.26.
- (18) N, R. DRAPER AND H. SMITH 1966, APPLIED REGRESSION AN-ALYSIS, pp. 171-195.
- (19) 陳熙揚,1978,運用數值預報統計法預測臺 灣西南部夏季雨量之研究。
- (20) 鄭子政,1969,氣候與文化,p.94.
- (21) 呂世宗等,1980,研究臺灣地區之大氣穩定度與其擴散潛勢,pp. 859-860.
- (2) 蔡豐智、1980, The Analysis Statistical Models of Sulfur Dioxide Air Pollution in Taipei, pp. 19-20.
- WILFRID BACH, 1972, Air Pollu-* tion, Mcgraw-Hill p. 26.
- (2) 呂世宗等,1973,臺北市大氣汚染之現況, 氣象學報第十九卷第三期,p.60.



# --------- 氣 象 學 報 補 充 稿 約 --------

- 一、來稿須用稿紙(以25×24之稿紙為原則)。
- 二、來稿字數以不超過15,000字,即連同圖、表、英 文摘要以不超過10印刷頁為原則。
- 三、圖及表之分量以不超過全文之 1/3 為原則。
- 四、英文摘要之字數以不超 1,000 字為原則。
- 五、關於表格之注意點:
  - (-) 表格須另用白紙繕製。
  - (二) 表格上方須有標題,並加表1表2等冠號。
  - (三) 表格中之項目,內容應儘量簡化。表中不重 要之項目或可用次字說明者應儘量避免列入 表中。
  - (四) 能以文字說明之小表,請採用文字說明。
  - (5) 原始記錄應加分析簡化後始可列入表中。
  - 粉 統計分析表中顯著處,以*號(顯著)及
     **號(極顯著)表之。
  - 出 表幅應考慮適合本刊版幅無準。(寬度勿超 過13.5 cm)。
  - (7) 表之標題應能表示內容。
- 六、關於插圖之規定:
  - (+) 挿圖應另貼於大張白紙上, 註明作者及文 題。
  - (二) 挿圖下方須有標題,並加圖1圖2等冠號。
  - (二)統計圖、模式圖及分佈圖一律採用120—150
     磅道林紙,以黑墨水繪製清楚。
  - (四) 統計圖原圖幅面應在12-15 cm , 以便縮 版。
  - (四) 模式圖原圖幅面應在15—20cm,以便縮版。
  - 份 分佈圖原圖幅面應在30 cm 左右,以便縮 版。
  - (出) 繪製微條粗細應能供縮小至 1/8 之程度,但 不能超過縮小 1/2 之程度。
  - (7) 數字應正寫清楚,字之大小粗細應一律,至 少能供縮至 1/8 之程度。
  - (h) 已列表中之內容,勿再重複以挿圖表示。
  - (H) 圖之標題應能表示內容。
- 七、關於照片之規定:
  - (→) 照片紙一律採用黑白片光面紙。

- (二) 照片幅面應在12—15 cm,以便縮版。
- (三) 照片應充分沖洗清楚,須考慮縮少至1/2時 尚能清楚之程度。
- (四) 照片如有特别指明點應加圈或箭頭表明。
- 八、文稿過長,或圖表過多過大時,投稿人得自行負擔印刷費。
- 九、關於參考文献之規定:
  - (→) 參考文献以經本人確曾查閱者爲限,如係來 自轉載之其他書判時,須加註明。
  - (二) 作者姓名以後為發行年份,加以括號,然後 為雜誌或書名、卷期數及頁數。(頁數必須 註明)。
  - (三) 交字敍述中述及參考文献局,根據文献之號
     較,用斜體阿刺伯字,加以括號,如(1)(2)
     (3)等揮入文句中。
- 十、文字敍述之號次以下列為序。 中文用:一、(→ 1. (1) i. (i) 英文用:I. 1. A. a.
- 十一、每頁下端之脚註以小號1,2,3,等阿拉伯字表 之,註明於該段文字之右上角。
- 十二、文字敍述中數數字除十以下之數字,儘量用阿 拉伯字表之。
- 十三、單位須用公制。單位記號例如以m(公尺)、 cm(公分)、mm(公厘)、m²(平方公尺)、m⁸ (立方公尺、cc(立方公分)、1(立升)、g(公分 )、kg(公斤)、mg(公厘)、°C(攝氏度)、% (百分之一)、ppm(百萬分之一份)等表之,可 不必另用中文。
- 十四、英文題目中重要之字第一字母大寫,介題詞、 連接詞及不重要字用小寫。圖表之英文標系及各 欄英文細目,除第一字之第一字母大寫外,其餘 第一字母均小寫。參考文献中作者姓名每字全部 字母均大寫,論文名第一字母大寫。其餘均小寫
  - , 雜誌名或書名每字第一字母均大寫。
- 十五、作者英文名以用全名為原則 · 名在前 · 姓在 後。
- 十六、其他未盡善事項得隨時修正之。

中華郵政臺字第一八九三號登記 爲第一類新聞紙類

Volume 27, Number 3,4

Sep / Dec 1981

# METEOROLOGICAL BULLETIN

(Quarterly)

# CONTENTS

# Articles

Spectral Wind-Wave Prediction Model Beng-Chun Lee (1)
Study on Automated Streamline Analysis Chung-Ying Hu (8)
Engineering Seismological Considerations Ming-Tung Hsu (17)
The Assessment of Sulfur Dioxide Pollution Potential
in Tainei Basin

CENTRAL WEATHER BUREAU

64 Park Road, Taipei Taiwan, Republic of China