FEBRE=TBH=MTEE I H)

—_1 —

THE RESEARCH OF DATA COMPRESSION ON IDMS *

Narn-Wen \ Leet

ABSTRACT

Many data processing applications involve storage of large volumes
of alphabetic data such as names, addresses and numeric data such as
climatic data, telephone numbers, salaries. In order to reduce the data
storage requirements and the data communication costs, data compres-

sion technigue is needed.

The data compression technique employed here is a modified
Huffman coding method. Repeating types of characters are taken into
consideratjon to reduce the redundancy in the data representation.

1. INTRODUCTION

.1 Database Software Packages
Numerous universities and corpora-
tions are utilizing central databases with
general purpose database software. The
two - software packages which are most
commonly used are IMS, an IBM Corpora-
tion product, and IDMS, a Cullinet
Corporation product. Both of these soft-
ware packages run on large general pur-
pose IBM or IBM compatible main frame
computers. IMS is a hierarchical database
system, and IDMS is & network database
system with some relational features.
Although these software packages are
more efficient on general purpose com-
puters than proposed relational systems,
they both have very significant central
processing unit requirements, have
massive disk storage requirements, and
move information to and from disk
storage frequently and in large amounts,

Both the IMS and IDMS software
packages have data compression and
expansion programs. When data is stored
in the database, the compression program
is calied. When data is retrieved from the
database, the data is expanded. While
both programs must be efficient, compres-
sion is usually.done during batch loads
of data with no effect on response time
at terminals. However, expansion occurs
during user access to the database from
terminals so the expansion program must
be very efficient,

1.2 Proposed. -Algorithm for Improved

Database Compression

In ‘Data Compression On A Database
System’, an August 1985 article in the
ACM Communications, Gordon V.
Cormack of the University of Manitoba
described data compression and expansion
algorithms which he believed to provide
impressive data compression on central

*HEM: 3FE7A11R BEDH: BETALRR
1k g BaeEEiidt

+ 119 -

—~ 32 —

databases stored under IMS. Programs
- based on these algorithms have been used
at several universities with significant
improvement in data compression over
the programs previously used with IMS.

1.3 Purpose of The Project

The purpose of this project is to
analyze the data stored under IDMS and
then write programs for these algorithms
-which can replace the data compression
and expansion programs currently used
under IDMS. The improvement in data
compression for IMS resuited from
the observation that data in the database
tended to consist of long strings of the
same type of character. For example,
names and titles are long strings of
alphabetic characters and numerical data
is generally grouped. While Huffman
coding is optimal with respect to average
compression, and other ad hoc techniques
take advantage of repeating strings of the
same character, techniques currently used
do not reflect repeating characters of the
same type.

To carry out the project it was

necessary to have a general understanding

of Huffman coding since the data com-
pression algorithm used in this project
is a modified form of Huffman coding.
A general understanding of IDMS was
required in order to replace the currently
installed programs. Programs were
written to analyze data and determine
the compression codes to be assigned to
characters. These programs were tested
and debugged using sample data. Then
actual TDMS data was processed by the
programs to determine the effectiveness
of the daita compression. Then data
compression and expansion . programs

were written in IBM assembler.
Unfortunately, at this time there is
very little data in the production IDMS
system at The University of Wyoming.
It was expected that the Human Resource
Systemn and Student Information System
would be installed before the project
was completed., But these installations
were delayed. The amount of data should

“be adequate when the Human Resource

and Student Information System are
installed, When this occurs, the analysis
program will again be tun against the
actual daia by Computer Services staff.
If the proposed algorithms provide more
significant improvements in compression
of the actual data, the currently used
IDMS compression and expansion
programs will be formally replaced by
the IBM Assembler programs developed
for this project. The code corressponding
to the algorithms in the IBM Assembler
programs-can be used as is,

2, TYPES OF DATA COMPRESSION

Two techniques that can result in
a more effective encoded data representa-
tion are logical and physical data compres-
sion, Both of them can result in reduced
transmission time and a reduced storage
requirement. '

2.1 Logical Compression

Logical compression is utilized when
the database software is designed. The
software should be designed to reduce the
amournt of space occupied by redundant
characters, and user transparent techniques
should be used for condensed representa-
tion of data elements.

If data in logically compressed dafa

« 120 -

bases are transmitted between locations,
transmission time will be reduced since
fewer data characters are transmitted.
While logical compression is an effective

tool in minimizing the size of a data-base,

it only reduces transmission time when
logically compressed data is transmitted.

Logical compression is normally used
to represent data bases more efficiently
and the frequency of occurrence of
characters or groups of characters is not
considered,

The following example illustrates the
use of logical compression when the
database software is designed.

In a climatic data set, a ‘date’ field
exists in a record, then we can use various
notation to represent 1 April 1986:

(a) 01 april 1986 (character re-
presentation}

(b) 01 apr 1986 (character representa-
tion)

(c) 01 04 1986 (character representa-
tion) :

We know the maximum value for
DAY is 31, and 5 biis are enough to
represent it; the maximum value for
MONTH 15 12, and 4 bits ate enough to
represent it. If we use 7 bits to represent
YEAR, then a total of 127 years can be
represented and relative years ranging
from 1900 to 2027 are permitted. We
can see that the nse of binary strings to
represent ‘date’ is very economical in
use of space.

2.2 Physical Compression

Physical compression
encoding characters using fewer bits
than the standard computer or data
' communications bit representations,

consists of

— 23 —

Typically, this has been done to reduce
the quantity of data prior to entering a
transmission medium and the expansion
of such data into its original format
upon receipt at a distant location.

Physical compression takes advantage
of the fact that when data is encoded
as separate and distinct entities, the
probabilities of occurrence of characters
and groups of characters differ. Since
frequently occurring characters are
encoded inte as many bits as those
characters that only rarely qccur, data
reduction becomes possible by encoding
frequently-occurring characters into short
bit codes while representing infrequently-
occurring characters by longer bit codes. -

The use of physical data compression
for disk storage reduces the amount of
disk storage that must be purchased.
Also, fewer disk accesses and lower data
transfer to and from disk storage is a
result, There are storage and processing

. costs associated with the programs which
‘ must be compared with the savings which

result from the compression.

3. DATA COMPRESSION
TECHNIQUES

The first interest in = character
compression iechnigques resulied from
transmission of characters over com-
municaiions lines. These techniques
increased the amount of information

‘which could be transmitted in a given

period of time. A number of techniques
have been employed 1o compress
characters for transmission over com-
munications lines. Null suppression
(replacement of most of the null characters
or blanks by a special ordered pair of

- 121 -

characters), bit mapping (a bit map,
which is appended in front of an input
string, can indicate the presence or
absence of nulls and thereby can reduce
the size of the string) and statistical
encoding- are three of these compression
techniques.

Statistical encoding takes advantage of
the probabilities of occurrence of single
characters and groups of characters, so
that short codes can be used to represent
frequently occurring characters or groups
of characters while longer codes are used
to represent less frequently encountered
characters and groups of characters,

Huffman coding is a statistical encod-
ing method which was described in 1952,
Huffman showed that given probabilities
of occurrence of a set of characters, the
average code length is minimized. As the
use of computers and external storage
increased, Huffman coding was applied to
storage of characters in computer external
devices. Other techniques for specialized
data have evolved over the years,

3.1 Huffman Coding

The Huffman coding technique is
optimal in that it results in a minimum
average code length for a given set of
characters. In addition, Huffman codes
have a prefix property which means no
short code group is duplicated as the
beginning of a longer group. For example,

if one character is represented by bit .

siring 101, then there is no other character
which will be represented by 10100 since
10100 will be interpreted as the combing-
tions of 101 and 00. Because of thig
special - feature, the compressed data
stream (bits combinations) can be decod-
ed immediately by tree node traversal
if we read from left to right without
examining the entire block of input data,

Toe use Huffman coding, each
occurrence of a character is counted in
order to determine the probabilities of
occurrence of each character in the data.

We arrange the characters in descend-
ing order of probabilities. The two
nodes with the smallest probabilities are
paired to produce another node whose
probability is the sum of the probabilities
of paired nodes.

Before the next pairing, sorting of
the new probabilities is needed to ensure
the probabilities have descending order.
Then two adjacent nodes with the lowest
probabilities of occurrence are again pair-
ed. By repeating this step, we finally get a
node whose probability of occurrence is 1.

By repeating the assignment of binary
0 and 1 to paired nodes at each pairing
step, the codes for each character can be
obtained by tracing back from the last
node 1o the starting nodes,

Huffman code can be generated
through the employment of a ftree
structure as illustrated in the following
two figures:

Character Initial st 2nd 3rd

Set Probability Step Step Step
Cl : 35 Cl 35 C1 35 C1 35
C2 15 cz 15 c2 15 C5678 22
C3 15 C3 15 C3 15 2 A5
c4 A3 C4 13 C4 13 3 A5 1
C5 12 cs 12 C5 A2 1 Cc4 130
cé6 06 Cé6 06 1 C678 100
c7 031 c78 04 0
C8 010

+ 122 .

4th 5th 6th
Step ‘ Step Step

Cl 35 |C25678 37 |[Ci34 631
34 28 (1 351 (C25678 370
C5678 221 |C34 280
C2 50

From the pairing operation above,
Huffman codes and lengths for Cl1, C2,
C3,...C8 are:

character codes length .
Cl 11 2
C2 00 2
C3 101 3
C4 100 3
C5 011 3
Co6 0101 4
Cc7 1001 5
C8 01000 5

Huffman code for a particular char-

acter is selected so that its length is as

close as possible to f (—log p), where the
base is 2, p is the probability of occurrence
of that character in the text, and f(x)
is the closest integer greater than or
equal to x.

3.2A Modified

Technique

"The central databases stored under
the IMS and IDMS databases typicaly
have data items which predominantly
group the same types of character. Names,
titles and addresses consist mainly of
alphabetic characters, Salaries, social
security numbers, and financial data are
primarily numeric characters,

For the project the Huffman coding
technique is modified to take these
repeating types of characters into con-

Huffman Coding

— 35 —

sideration. Four data types were used,
alphabetic, numeric, blank and other
symbols. The -data types used were

intuitively selected. As experience with
the actual data is acquired, it may be
advantageous to change the data types.
For each data type, a code is assigned
to every kind of character appearing in
the data. To compress a record, an
alphabetic type code is assigned to the
first character. Then the first character
is checked to determine which type the
first character actually was. Then the
second character is assigned a code for
the actual type of the first character.
This process is repeated .until the entire
record has been compressed.

To expand a compressed record, it
is known that the first character is a code
of the alphabetic type. The code bits of
the first character are used to determine,
from the alphabetic type codes, what
the first character is, The first character
is used to determine the code type of the
second character. The code bits of the
second character are used to determine
what the second character is. Then the
code bits of the second character are
used to determine the code type to be
assigned to the third character. This
process is continued until the entire
record is expanded,

Modified Huffman coding is almost
the same . as Huffman coding, the only
difference being the assignment of codes
to characters for several different types.
For the modified Huffman Coding
technique, we count the number of times
a character is followed by an alphabetic
character, and for each total obtained we
divide by the total number of characters
in the data. This yields probabilities for

+ 123 -

the alphabetic type. This process is
repeated for each type, so that we have
probabilities for each type. Then for-each
type, character bit codes are determined.
The detailed process for this will be
described in another section of the paper.

4. DATA ANALYSIS

4.1 Input

Data was provided in a sequential file
with fixed length records which were
unloaded from the data base, Each record
contains a variable number of characters.
This file is processed to generate a new
sequential file in which each record has
the number of characters followed by the
characters to be analyzed.

4.2 Analysis Process

The main program includes 5 sub-
~programs. The Frequency Analysis and
Counts tables are generated by the main
program, The Length table is produced
by the subprogram ‘leng’.
table is produced by the subprogram
‘codex’. The program ‘sorting’ is called
for sorting of the counts before the
Counts table is printed out. The program
‘reseq’ is called by program ‘leng’ for
frequency sorting. The program ‘rever’ is
called by program ‘codex’ for probability-
sum sorting before the modified Huffman
code is determined,

In the text analysis program (mmain
program), we count the

(a) Total number of characters, i.e,
number of characters in the text.

(b) Occurrence of each characier in
the test data file.

(c) The percentage of each character-
occurrence in the appropriate data type

The Codes

and in the whole test data file, i.e. the
percentage of occurrence ‘A’ for the
alphabetic type, and in the whole text,

(d) The total number of occurrence
of each character following a character
of each data type. '

This yields the probabilities of occur-
rence of each character of each data type
by appropriate division operations.

The tables produced by this process
are omitted in this paper.

The first character of each input
record is always regarded as an alphabetic
data type.

Applying the Huffman coding method,
we determine Huffman codes for each
character in the test data file. Then we
count the length of each code. Actually,
Huffman codes are not required for

'‘characters because we are going to use

proposed coding method to generate
compressed codes. However, we need
those codes to calculate code lengths.

Note that codes may be different for
the same character if the fypes are
different,

The codes gencrated are stored in
compression-code tables. Each data type
has an associated table. The characters
are sorted with the longest length first,
and the shortest last. Initial table values
are formed using the rule below:

(¢! means the first character with
the longest length, 21 medns the length
of the character with longest length (cl))

(cn means the last character with
the shortest length, @n means the length
of the character with shortest length (cn) }

-y

¢l 21 210s followed by (15—21) 1’s.
¢2 22 (first 22 bits of previous
value) — 1, then followed by

- 124 -

(15-22) I’s.

Then the final table value is formed
by shifting each of them{15—%) times to
the right, filling with zeros from left.

cn €n (first ¢n bits of previous
value) — I, then followed by Then a one is inserted in position (16-—£i)
(15—“21‘1) l,S. fl'om the I'lght
' As an example:
character code-length initial code (-1 5 bits) final c.ode (16 bits)
T 8 1111111381111111 0000000111111111
B 6 1111101111111 0000000001111110
A 6 111101181111111 0000000001111101
L 5 111011111111111 0000000000111101
J 3 110811111111111 0000000000001110
P 2 101i11111111111 0000000000000110

5. COMPRESSION

The code table are utilized in the
compression program. (Given a string
of characters to be compressed, the
alphabetic table is used to compress the
first character (the first character of each
record is always. regarded as alphabetic
data type) via character linear searching,
and the Subsequént characters are com-
pressed may use another code table as
determined by the data type of the
previous character. Each character is
represented by a 16-bit string in code
table. The compressed code used in the
compression process is contained in the
rightmost several bits. Preceding each
compressed code is a bit with value 1
(this 1 functions as the delimiter), and
the rest of the bits are all padded with
binary value 0’s. The length of each actual

code and the code itself are determined_

by following steps.
Determine the code length of a

compressed character:

1. Set - comparison = value (i.e.
comparator) c¢v to be 0000000000000100
(binary representation).

- 2. If the table value for a compressed
character is v, compare c¢v with v. ‘

3, Ifov is greater than v, then the
count is the length of the code to- be
used. Stop.

4. If cv is not greater than v, then
add one to a count which is initially set
to 1. Double cv. Go to 2.

The shift instruction and mask instruc-
tions are used to move compressed codes
into output buffer, and then the number
of compressed bits are moved into the
record-tength field.

6. EXPANSION

The bit code length of a character,
which will be produced in the expansion
process, is not known in advance. So,
a binary tree structure is used in the

» 125 -

expansion program, Four binary trees
are used for the four different data types'.
A code is expanded by examining the
input bit string one bit at a time. If the
current bit is 1, the search moves fo
the left son, otherwise to the right son.
When a leaf is encountered, that means
a bits combination for a character ends,
a character should be produced, and the
next input bit is the first bit of another
character,

7. CONCLUSIONS

The method employed here achieve
the saving in disk storage and disk access
activity., Generally speaking, the compres-
sion method can be expected to reduce
the size of raw data by approximately a
factor of three. The costs on the execu-
ticn of compression and expansion are
recovered by fewer data transfer. This
technique can be applied on any database
system.

8. ACKNOWLEDGEMENTS

This paper is extracted from the

author’s research which was sponsored
by The Central Weather Bureau, Republic
of China, ,

The author wishes to express his
sincere appreciation to Dr. William
Walden, Director of Computer Services
of The University of Wyoming, who
directed this research. Appreciation is
also given to Dr. Henry Bauer, Chairman
of Computer Science Department for
his valuable advice.

9. REFERENCES

1. Cormack, Gordon (1985): ‘Data Compres-
sion on a Database System’, Communications
of the ACM, pp. 1336-1342,

2. Reghbati, H. K. (1981): ‘An Overview of
Data Compression Techniques’, Computer,
pp- 71-75.

3. Guiasu, Silviu (1977): ‘Information Theory
.with Applications’, McGraw-Hill Inc.

4, Held, Gilbert {1983): ‘Data Compression,
Techniques and Applications, Hardware and
Software Considerations’, John Wiley &
Sons.

5. Johnson, David (1983): ‘Structured As-
sembly Language for IBM Computers’,
Mayfield Publishing Company. ‘

H A R B A IDMS Lk & AT R

F

#

b

E

TERURHER |+ AR FICS RIS » i ~ Sk 5 BRI KRBT - In
SRERER ~ WS ~ FE o BT R EROMF NI EE RE LARA » R AR

BRI BRI

HEE R PP E SRR F DR MR TERREE MLET » "EREA /TR
By » EFR R A TR —— SR O RIRTEIR o

