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An operational Statistical/Dynamical Typhoon Intensity Prediction

M odé€l
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1. Introduction

The proposed statistical/dynamical typhoon intgnsiediction model is
essentially a track pattern based Bayesian mgjtession model. The data for the
predictions are based on the numerical weatheigtiaa computer model run by NOAA,
namely Global Forecast System (GFS). This prgkatl provide an operational
program, through which one can forecast the intgmdia typhoon that may affect the
vicinity of Taiwan area. Given the nature of GF$agéhis model shall provide forecasts
up to 120 hours ahead in a 6-hour interval. Thaildedf the proposed model are

elaborated in the following context.

2. Data

The backbone of the data used for this projettedNOAA’s GFS data which run
from 2008 to 2011 and are provided by the Centrehiver Bureau (CWB). In
implementing forecast operation using our modetesysthe on-line GFS data are

available on the website nomads.ncdc.noaa.govGH& data are in 0.5 degree by 0.5



degree resolution and at 6-hour interval. Bec#tus&FS data are generated by
dynamical models and these data are used, ouragpoan be regarded as a
statistical/dynamical method. Toward this projeat, conduct the research for the
typhoons occurred during the period from 2008 tb120Separately, the typhoon tracks
over the western North Pacific in a 6-hour intemhating 2005-2011 are also provided by
CWB. In addition, we also used a global Sea Sarfaamperature (SST) data to develop
the maximum potential intensity (MPI) predictor tbe forecast system. The daily SST

data were downloaded from the NOAA websitew.ncdc.noaa.goand in 0.25 degree

by 0.25 degree resolution. To fit the daily SSTadatthe 6-hour interval forecast, we

perform the linear interpolation to get the 6-hoterval SST data.

3. Model Development and Predictor Selection

We adopt the statistical forecast model of Chal.ef2010a). Essentially, the
mathematical model is a Bayesian multi linear regie model. As in Knaff et al.
(2005), the potential predictors used in this pogan be divided into two categories: 1)
those related to climatology, persistence and s@&idyphoon track pattern and intensity,
termed herein as “static predictors”; and 2) thre$ated to current and future
environmental conditions, termed herein as “timpehelent or environmental predictors”.

In specifics, in the first part and the second péthis section, we shall
respectively introduce the track pattern clusteafgprithm and the Bayesian multiple
regression model. Following the similar line sudgdsn Knaff et al. (2005), in the third
part of this chapter, we shall address the devedopmf the static part of the operational

forecast model. In the last part of this sectioa,shall discuss the inclusion of on-line



GFS forecast data and SST data as the backbohe birte dependent part of the
forecast model. The potential predictor poolssdd in Table 1-1 and 1-2. As a side note,
all predictors are developed using a “perfect pnogthodology (Knaff et al., 2005)

where the analyses and actual tropical cyclonettssk are used.

3.1. Track Pattern Clustering

The predictor selection of the proposed forecastiehis grounded on a track
pattern oriented classification scheme. In thieaesh, we shall use a finite mixture
Gaussian model introduced in Camargo et al. (2@0d)Chu et al. (2010b) to solve the
tropical cyclone (TC) track clustering problem.

Based on the assumption that there are a fewndistypes characterizing TC
tracks in a basin of interest, we model each TCktgath as a second-order polynomial
function of the lifetime of this TC. Mathematicglifor each specific track type, the set
of coefficient of this polynomial function is presably jointly Gaussian distributed.
Each TC track type thus has a unique distributiarameter. The space spanned by the
parameters of this track type model is a linear lwoation of a set of distinct Gaussian
distributions.

Assuming there are observed track records for a given TC. For eaclorte
there are three features reported—Ilatitude, lodgit@nd the time. We denote the path
record of a TC and its relative observed time ve&to the second order polynomial

function, respectively, by

Z:Llat z:Llong 1 t1 1::Lz
Z2=[24:Zipgl =| o e [T (1a)

Zn,Iat Zn,Iong 1 1:n tr?



wherez , andz,, fori=1..,n represent the-th latitude and longitude record; afd

represents the time for theth records of this TC relative to the first recéod i = 1..,n.
We further assume that there d€edistinct TC track types in the basin of interegtere
K is assumed to be a constant in a given hypotbesisdel. With the model defined in
Eq. (1a), if a TC is categorized as typel< k < K, the link function between the TC

track path and relative time is governed by thWihg formula

:B(:Iat :B(l)(,long
z=Tp" +&, wherep* =| B\, By, | aNde~N(0,Z"), 1k <K. (1b)

k k
IBZ,Iat ﬂz,long

In model (1b), the parameter gt is distinct for each TC clustering types aNge )
denotes the normal distribution. With this modetuitively one can see that the zero-
order coefficient dual provides the mean genesiation of this clustering type; the first-
order term features the characteristic linear dimacof this path type; the second-order
term determines the recurving shape of the typedih of this type; and the covariance
matrix ) determines the spread of a particular type. fidise term in model (1b}, ,
is assumed multivariate Gaussian with zero meanaaBdoy 2 covariance matrix, .
The conditional density for thieth cyclone, conditioned on membership in the cluste
type k, is therefore defined as

Pz |T,.0,) = 2" |2, [ exd-tr[(z, - TB)EMz - T:8)'1/2}. (2a)
In Eq. (2a), operatoexp{-} denotes an exponential function with a naturalebage
adopt the notatio®, ={g,,X,} , which is referenced in model (1); and operét¢:)

denotes the matrix operation function “trace.” Bwe tdefinition of a mixture Gaussian

model, Eqg. (2a) leads to the marginal mixture model



K
P(z |T) :zakp(zi | T:.0,) (2b)
k=1
where, P(z; | T,,0, )is given by (2a), andr, is the posterior probability of clusté,

K
which implies> a, =1. If we letZ'=[z,,z,,...,z,] be the complete set of all observed
k=1

TC trajectories, and'=[T,,T,,....,T, e the associated measurement times, then the full

probability density ofZ given T, the conditional likelihood, is formulated by

P(ZlT)=IJZakP(Zi | T..0,) 3)

k=1
where P(z, | T,,0, )is defined in Eq. (2a). Assume that the numbeduster type K, is

given (for a real application, we can refer to litexature to choose the proper number
for this parameter). Because hypothesis seleddioot the focus of this section, it is

proper to choose a non-informative prior for thedeiacoefficients; that isP(0,,a,) 0 1

for model (3). With this non-informative prior assption, and following the basic Bayes
formula given in Eq. (1), the posterior distributifor {0, ,a, } is proportional to the

conditional likelihood given in Eq. (3).

In many real-world applications, only the peakaaref the posterior distribution
may be of interest. An efficient approach to estintathe mode of the posterior
distribution is the Expectation-Maximization (EMyarithm. Given the likelihood model
(3), in the E-step the membership probability dfGacategorized to each clustering type
is calculated. In the M-step, the optimizationraation for the model parameter set of
each type is calculated. These include regregsoameters, the posterior probability of

clusterk, and the covariance matrix. The maximization forfolr coefficient parameter



B* and variance paramet&* are derived from a linear Bayesian regression mdde

details of the formula for the EM algorithm are yided in Chu et al. (2010b).

Given the number of clusters and an initial sgtbhthe model parameters, after a
few iterations, the proposed EM algorithm will cenge to a fixed set of parameter
estimation. Usually, the convergence of an EM algor is determined when the
difference between two iterations is less thanficgently small value. Note that these
convergent values are not necessarily the gloltahom estimation and are determined
by the initial starting values. Therefore, mukiglifferent initial values should be
selected and the set of estimation with the maxirhketihood of the observation chosen.
After applying the aforementioned clustering algon to the track pattern data, we

noticed that there are 5 distinct track patterresyfnat affect the western North Pacific

(Fig. 1).
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Fig. 1: Track pattern type for typhoons affect thenity of Taiwan (2005-2011)

In Fig.1, each reported typhoon path from 20050b12is plotted as a light green curve
in its category. The black circles in each panelade the mean track of each type. Some
typhoon tracks are not distinct and are labelé®éser”. Based on the clustering results
given in Fig. 1, during the 7-year period from 2002011, there are totally 148
typhoons, in which 20 Type A, 33 Type B, 17 Type3C,Type D, 29 Type E, and 12

other type. We thus shall first develop the statedictor set for each of these 5 types.

3.2 Bayesian Regression Model

Throughout this reportNormal(e) denotes the normal distribution, which is the

foundation of the proposed regression model. lraildgtthe classical Bayesian linear

regression model can be formulated as follows

Z |B,o%, X ~ Normal (Z | XB,o”l ), where, specifically

X' =[X, X5, X ], 1y is the N x N identity matrix, and

X, =[L X, X,,,.... X, ] is the predictor vector foz,, i =12,...,N,

B=15:Bu: BB - (4a)
In (4a), Z, denotes the change in intensity for ihth observation (for example, it can
denote the 6-hour interval chang), denotes the selected predictor setZor g is the
regression coefficient vector, in which specifigglf, is referred to as the intercept.

Given the current intensity and intensity changeedast, the intensity forecast is

obtained by adding the intensity change forecast te current intensity measure.



Sometimes one may pay more attention on the priyaibithe typhoon intensity shall
increase or decrease after a given time intervablled this kind of scenario, a probit
regression model is more appropriately. A probifression model is very similar to the
regression model defined in (4a). The only diffeens that, the target variable
defined in (4a) becomes a latent variable, such tha

1ifZ 20

. 4b
0 ifZ <0 (46)

PW12)=[]P(y12), wherey, :{

The inference solution for Model (4a) or (4b) canfbund in most classical Bayesian
analysis literatures. Towards the operational made analysis results given in this
report, we shall provide the technical detailshaf theoretical inference solution for the
regression model (4a) as follows (Gelman et al4200

The regression model (4a) in literatures is ofieferred to as “Ordinary Linear

Regression”. To solve this model, one usually ckedbe non-informative prior for the

model paramete{§,log(c® )JThat is,

P(B,o*)007 (5a)
With this prior, the posterior distribution for tieodel parameters can be derived as:

PB,o%|X,Z)=P@|0o?,X,2)* P(c*|X,Z), in which

P@|o?,X,Z)~ Normal (B,V,0?) ,

P(o? | X,Z)~ Inv- x*(N - K,s?), where

Vv, =(XTX),

B=(X"X)*X"Z,

2 _ 1 —wpe\T _vp
S = (Z-XB) (Z-XP) (5b)



In (5b), Inv- x*(+) denotes the inversg? distribution.

When a new predictor st is available (such as through the GFS system), the

inference for the intensity change for the nexttimterval is provided by:

P(Z |X,X,Z) ~ty_ (XB,S2(I +XV,XT)) (5¢)
In (5c), s°, ﬁ andV, are calculated in (5b) and the right hand sideribigtion t,_, ¢)

denotes a multivariate t distribution with a foratiéwing standard convention. When the

number of sample N is much larger than the predidtmension K, the t distribution in
(5¢c) can be well approximated by a normal distidgrutwith mean>~<[§ and variance
matrix s (I +)~<Vﬁ)~(T ).

In the following context of this report, the regsion model (4a) and its

theoretical solution (5) for this regression modbhll serve as the backbone for the

layout of the analysis results and discussionb®fést of this report.

3.3 Static Predictor Selection

In the static predictor selection phase, we carsglpotential candidates for the
forecast for change in intensity after present tiddechange in intensity before present
time (DVMX); 2) current intensity (VMAX); 3) storntranslational speed (SPD); 4)
latitude at present time (LAT); 5) longitude atg®at time (LONG); 6) absolute value of
yearday minus 248 (JDAY); 7) days after VMAX largban 18m/s (RDAY); and 8)
absolute value of RDAY minus one third of this tgph type’s expected life span
(ARDAY, refer to Table A-1 for the expected lifeagpused in this study). The candidate

pool described above is summarized in Table 1-1.



Predictor

Description

DVMX Intensity change before the present time

VMAX Current intensity

SPD Storm translational speed

LAT Latitude

LONG Longitude

JDAY Absolute value of yearday minus 248

RDAY Value of days after VMAX larger than 18 m/s
ARDAY | Absolute value of RDAY minus 1/3 of the expectdd §pan of its type (Table A-1)

Table 1-1: The potential static predictors usethexmodel

3.4 Time-Dependent Predictor Selection

In this subsection, we shall focus on develophgttme dependent or

environmental predictors. The candidate pool oétolependent predictors is basically
divided into three categories. The first one isstheelated to temperature field, including
SST, T200 (temperature at 200 hPa level) and T@2bperature at 925 hPa level). The
second category includes those related to moisilck including the relative humidity
(RH) at high level (RHHI, which is the average dfl Bt 300 hPa, 350 hPa, 400 hPa and
450 hPa) and relative humidity at low level (RHLED 925 hPa). The third one is those

related to wind and pressure fields, includinguesical wind shear (SHRD), relative

vorticity (RV, at 850 hPa), and sea level pres¢8itéP). Hereby, SHRD essentially

measures the wind difference between low levelragh level (850 hPa and 200 hPa

respectively), which is calculated by the formula:

200

SHRG =4* > w,*,/(u, —0)? +(v, —V)? (6)

p=850

10




200 200
In (6), U= ZWD* u, is the deep layer zonal winil;= pr*vp is the deep layer
p=850 p=850

meridional wind; andw, is mass weight, which is set as 0.5 for all tmeuations in this

report. For each of these predictors, we shadl thk area-average from the GFS values
in the shaded area illustrated in Fig. 2. In spedife center of the two circles in Fig. 2 is
the center of the current eye of the target typhdte inner circle has a radius of 200 km
and the outer circle has a radius 800 km. Ther¢haee exceptions. For SST and SLP,
we choose the data at the eye of a TC. For RV,hweese the area that is within a circle

with radius 1000 km.

&
S

4—400 km—»

«— 1600 km——

Fig. 2 The area for potential track based time ddpat predictors

11



Predictor Description
MPI Maximum potential intensity defined in Eq. (7)
MPI12 MPI squared
T200 Area average temperature at 200 hPa

T925 Area average temperature at 925 hPa
RHLO Area average relative humidity at 925 hPa
RHHI Area average relative humidity at 300, 35004060, 500 hPa (average)

SHRG Generalized 200-850 hPa vertical wind shefinelbin Eq. (6)
RV850 Area average (0-1000km) 850 hPa relativeiaityrt
SLP Sea level pressure

Table 1-2: The potential environmental predictasdiin the model

The primary use of the SST is to determine the uppand of tropical cyclone intensity

as a function of SST, which is commonly referredddhe maximum potential intensity

(MPI). The SST values are determined at the typloamter and we adopt the same

procedure to develop the MPI as in Knaff et al0&0 The formula of MPI given SST is:
MPI = A+B*expC* (T -T,)) (7)

In (7), A = 38.21 knots (or 19.66 m/s), B = 170Krdts (or 87.82 m/s), C&1909C™,

T, =300°C and T is in the unit ofC. The candidate time dependent predictor pool is

summarized in Table 1-2, in which the “area averagthout specification denotes the
average over the area defined in Fig. 2 centerdteatye of the TC.

In both Section 3.3 and Section 3.4, upon theiptad are chosen, the regression
model is set, which applies a stepwise proceduselext variables from the predictor
pool at each forecast time. The significance ohezmndidate predictor is based on a
standard two tail F-test and the operational tholkekis set as 99%. Once a predictor is

chosen, we shall normalize this variable with respe its time span.

12



4. Results and Discussions

In this section, we shall provide the simulatiosulés and discussions with
applying the proposed forecast framework to tha dascribed in Section 2. To evaluate
the model performance, we shall perform a leaveanieross-validation (LOOCYV).

The results thus shall be compared with the clitogipand persistence (CLIPER) and
the benchmark STIPS model developed in Knaff g28I05). We also assess the model
performance using the same model development agpreghout using the track pattern
classification (that is, no TC track type is invedl). Throughout this report, we denote
the track pattern classification based model asd®€&€luster” and the one without as
“Model General”.

We applied the proposed forecast model to theagpk occurred in the WNP
during the period 2008 to 2011 (totally 76 typhgoii® compare with non-Bayesian
benchmark forecast models “CLIPER” and “STIPS”,shall use the mean output as the
forecast of the models developed in this resedidbdel Cluster” and “Model General”).
The potential forecast capability of model is meadiby the conventional percent
variance explainedR?), mean absolute error (MAE), and prediction staddaror (SE,
the standard deviation of forecast error) in thiglg. In specific,R* is positive oriented,
which ranges from 0 to 1. The closerR$ to 1, the better skill a forecast model is. On
the other hand, MAE and SE are very similar anth lnbthem are negative-oriented and
ranges from O to infinity. That is, the closer i®\Kl or SE to 0, the better a forecast
model is. Due to the non-linearity characterizedyintensity change, we deem MAE

is a more robust statistics than SE as a foregdstreeasure for this study.

13



TC Type Model | Measure | 6-hour 12-hour | 24-hour | 36-hour | 48-hour
Model R2 (%) 27.4 53.4 81.3 68.1 73.6
Cluster LMAE 1.57 2.15 2.70 4.65 4.83

SE 2.23 2.87 3.50 6.90 6.14
0,
o | s [m2ED (i fese | et | et | e
General : : : : :
SE 2.17 3.12 5.02 7.16 8.74
CLIPER MAE 1.54 2.89 6.28 9.19 10.10
SE 2.59 4.16 8.05 11.35 11.79
Model R2 (%) 28.7 39.5 57.2 72.1 80.4
Cluster | MAE 1.80 2.84 4.36 4.47 4.13
SE 2.60 3.90 5.57 5.68 5.25
0,
o [ oo [RE0O o0z [ os e | sa | e
General : : - - .
SE 2.57 3.97 6.19 7.22 7.13
CLIPER MAE 1.72 3.23 5.94 7.76 9.40
SE 3.07 4.99 8.49 10.73 11.85
Model R2 (%) 19.7 43.9 65.0 77.2 88.4
Cluster LMAE 2.14 3.08 4.17 4.08 3.38
SE 2.95 4.02 5.68 5.8 4.74
0,
C Model R2 (%) 30.8 46.1 66.5 80.2 87.0
General LMAE 1.96 2.88 4.32 4.45 4.30
SE 2.68 3.92 5.48 5.37 5.07
CLIPER MAE 1.88 3.59 7.15 9.87 11.74
SE 3.21 5.34 9.45 12.02 13.85
Model R2 (%) 215 45.7 61.3 72.7 80.2
Cluster | MAE 2.16 3.17 4.97 5.88 5.52
SE 3.08 4.19 6.35 7.27 7.25
0,
o | o [RE00 205 | g0 | seo | sen | e
General : : : : :
SE 2.95 4.36 6.82 8.00 8.20
CLIPER MAE 2.23 4.20 8.14 11.48 13.95
SE 3.45 5.67 10.17 13.87 16.28
Model R2 (%) 28.4 40.4 65.7 72.2 81.0
Cluster LMAE 1.70 2.53 3.25 3.47 3.63
SE 2.41 3.46 4.20 4.53 4.90
0,
E Model R2 (%) 32.5 232.89 4;26 42.3 52;
General LMAE 1.67 . 4. 5.27 5.
SE 2.32 3.55 5.29 6.50 7.08
CLIPER MAE 1.45 2.69 4.90 6.32 9.03
SE 2.82 4.44 7.14 8.54 11.18

Table 2: Static model forecast performance for dachype. “MAE” denotes “mean absolute error”; “SE”

denotes “standard error”, both in the unit “m/s”.
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Based on the predictor selection procedure desttrib Section 3.3 and 3.4 (in
significance level 0.01), we generate our regressiwodel for each typhoon type
respectively. For each simulation, we also geneaatgther independent model, which
adopts the same predictor selection procedure wuftitnging the cluster classification
described in Section 3.1. For the model evaluatie apply a strict LOOCV procedure
for each of the 76 typhoons occurred in the weshwrth Pacific (WNP) from 2008 to
2011. The results are provided in Table 2 (alonilp WILIPER). To be noted, due to the
limited number of samples for some TC types becaidigbe short time period of the
GFS data (i.e., only 4-yr), we only provide up ® Hours lead forecast for the “Model
Cluster” (Table 2 and 3) to avoid the potential mloglvaluation bias. For 12-hr forecast,
the “Model Cluster” generally has smaller MAE retatto the “Model General” and
“CLIPER” (Table 2). This is most clearly for Tyf@ewhich affects the Taiwan area the
most (Fig. 1). For longer lead times (24- to 48-the forecast skill of “Model Cluster”

distinguishes itself even more from the other tewadhmark systems.

Model | Measure | 6-hour 12-hour | 24-hour | 36-hour | 48-hour | 60-hour | 72-hour
Model R2 (%) 24.8 43.3 62.6 72.9 81.4 NA NA
Cluster MAE 1.89 2.83 4.15 4.61 4.36 NA NA
SE 2.71 3.82 5.43 6.05 5.77 NA NA
Model R2 (%) 29.4 39.8 53.3 62.1 69.8 78.3 78.3
General MAE 1.83 2.92 4.79 5.66 5.83 5.58 5.79
SE 2.60 3.92 6.05 7.12 7.33 6.99 7.39
CLIPER MAE 1.80 3.40 6.54 8.93 10.80 12.94 14.62
SE 3.10 5.05 8.84 11.56 13.34 14.99 15.86
STIPS R2 (%) NA 40.0 49.4 54.6 57.7 59.6 61.2
MAE NA 2.88 4.78 6.22 7.56 8.75 9.57

Table 3: Static model forecast performance comeparver all TCs through 2008-2011. “MAE” denotes
“mean absolute error”; “SE” denotes “standard érrboth in the unit “m/s”. The model performance

measure of “STIPS” is from Table 6 of Knaff et @005).
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We also summarize the model performance statisties all 76 typhoons in
Table 3, in which we also include the performanteéhe benchmark forecast model
STIPS developed in Knaff et al. (2005). The perfance results in Table 3 can be
further visualized in Figure 3, from which we caeghat, for short time lead forecast (6-
hr), the benchmark model “STIPS”, the “Model Gelieaad the proposed track pattern
classification based “Model Cluster” deliver veryngar performance. However, for
longer lead times, the “Model Cluster” unanimousiytperforms the “Model General”.
Throughout the lead time span we tested, “Modele&adh always performs better than
the benchmark “STIPS” and much better than the l®MCLIPER” approach. The
similar performance comparison conclusion betwedfodel Cluster” and “Model

General” can also be drawn from Table 2.

80+ .
—HB0r .
o
e e —4— Model-Cluster ]

—2- Muodel-General
—= STIRP=
El:l | | | | | | |
a 10 20 30 40 50 B0 70 a0
Forecast Lead Time {Hours)
15 T T T T T T 4
—4— Model-Cluster
—&- Model-General
@ 10H - STIPS .
= —+ CLIPER
L
S st :
|:| | | | | | | |
a 10 20 30 40 50 B0 70 a0

Forecast Lead Time (Hours)

Fig. 3 Model performance comparison
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TC Type | 6-hour 12-hour 24-hour 36-hour 48-hour
A MPI (0.45) SHRG (-0.59) | SHRG (-0.62) | RHLO (-0.55) | VMAX(-0.60)
B MPI (0.44) LONG (0.49) LONG (0.57) LONG (0.56) VMAX (-0.62)
C MPI (0.50) MPI2 (0.60) MPI2 (0.67) LAT (-0.74) LAT (-0.78)
D MPI2 (0.47) | MPI2 (0.54) MPI2 (0.57) MPI2 (0.57) VMAX (-0.64)
E MPI (0.51) MPI (0.54) MPI (0.58) SHRG (-0.57) | VMAX (-0.64)

Table 4: The most significant predictor for eachetmst model (“Model Cluster”) in Table 2. The nwenb

after each predictor in the table is its respeatimgelation coefficient.

In Table 4, we provide a list of the most impottgsignificant) predictors for
each lead time forecast model of each track tyje sNrprisingly, the SST related MPI

and the vertical wind shear (SHRG) are almost abwanportant for the forecast.

Three examples

In the following context, we shall provide threeamples as the case study to
illustrate the details of the proposed statistioe¢cast model, “Model Cluster”. In all
three examples, we shall respectively provide dadistic forecast. We also want to
discuss a few key points of using this forecast eh@dth the aid of the explicit examples.
In the first step of each example, we assume tedtave run the track pattern based
clustering algorithm over all the typhoons occurirethe past (e.g., 2005-2011).
Therefore, we have had thB-6rder, the T-order and the™-order coefficients (Eq. 1b)
for each typhoon type. In this study, we adoptréseilts obtained in Chu et al. (2010b).

The details of the key results are given in the &mpx and the detail procedure is

17



described in Section 3.1. With the track coeffitieheach TC typhoon, for a given TC
track record, one can measure its distance to #ganrar regressed track for each type. In
the end, choose the cluster type that is closdsettrack pattern of this TC.

Based on the coefficient table given in Table Av2,decide Typhoon Melor in
2009 belongs to Type C. In an operational settimgbelonging of an on-going typhoon
to a particular path type is not known a priorioviever, users may first consult the
predicted typhoon trajectory and compare it torttean track of each typhoon track
cluster (Fig. 1 and Table A-2) as a basis for degig~ollowing the procedure detailed in
Section 3, we have the model for 6-hour lead fasefa this typhoon. And the result is
given in Figure 4. In Fig. (4a), we first show tihean of the probabilistic forecast of the
proposed model (solid line). Based on the distrdsutlerived from (5c), we also provide
the upper quartile (P(intensity) < 0.75) and thedoquartile (P(intensity) < 0.25) of the
forecast (both in dotted lines). The distance betwthese two bounds shows the
variation of forecast. Conceptually, the smaller 8E of a model forecast is, the better
(or accurate) the model is. Similarly, the dethiflerecast results for Typhoon Morakot
are shown in Fig. 5 and the results for Typhoonmiaaol are shown in Fig. 6.

In all three examples, we can see most of thedbserved intensity measures are
well bounded by their relative intensity forecagpar quartile and lower quartile (Fig. 4a,
5a, 6a). It's also worth noting that, in all Fidp,46b and 6b,, the forecast model indeed
provides right intensity change directions in mafsthe time, however it does not
perform well when the typhoon intensity has draskiange (say larger than 10 m/s in 6
hours). All these three examples illustrate a slooning of the proposed model. That is,

a linear regression model is only optimum when ole&n noise is normally distributed.

18



However, the abrupt surge or drop of TC intensékidves more like an extreme
distribution with a very long tail. Also, the praged model use a macro-scale (mostly
within 200-800 km) area average, which would smanththe regional weather signal.

Nevertheless, the forecast skill of our approadtiisbetter than the CLIPER (Table 5).

6-hour lead forecast for typhoon “2009 Melor”
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Fig. 4a: 6-hour lead forecast for the intensityyphoon “2009 Melor.” The upper and

lower quartiles of the forecasts are indicateddaylsroken lines.
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6-hour lead forecast for typhoon 2009 Melor™
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Fig. 4b: 6-hour lead forecast for the intensityrayof typhoon “2009 Melor.”
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G-hour lead forecast for typhoon "2009 Morakot”
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Fig. 5a: 6-hour lead forecast for the intensityyghoon “2009 Morakot.” The upper and

lower quartiles of the forecasts are indicateddaylsroken lines.
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G-hour lead forecast for typhoon "2009 Morakot”
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Fig. 5b: 6-hour lead forecast for the intensityrayof typhoon “2009 Morakot.”
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6-hour lead forecast for typhoon “2011 Nanmadol”
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Fig. 6a: 6-hour lead forecast for the intensityyphoon “2011 Nanmadol.” The upper

and lower quartiles of the forecasts are indicateded broken lines.
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6-hour lead forecast for typhoon “2011 Nanmadol”
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Fig. 6b: 6-hour lead forecast for the intensityrgpaof typhoon “2011 Nanmadol.”

Model Cluster CLIPER
Typhoon Name
R2 (%) MAE SE MAE SE
2009 Melor 35.6 2.44 3.23 2.65 3.93
2009 Morakot 19.8 2.01 2.92 2.06 2.99
2011 Nanmadol 40.7 1.98 2.61 2.49 3.34

Table 5: Summary of the performance measure focélse studies
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In summary, we have developed a statistical/dyoalaipproach for forecasting
typhoon intensity’s probabilistic distribution. Vilave proven the mean output of the
proposed model outperforms the benchmark forecadehCLIPER and STIPS. The
model is featured with three highlights. The fose is that it is grounded on a track
pattern based classification. Second, it involveth Istatic predictors, such as current
location, current intensity, and time dependenirenmvnental variable related to
temperature, wind, and moisture fields. Third rdypdes a probabilistic forecast of the
typhoon intensity, which provides a variation of florecast rather than a single as do in
most benchmark models.

With all the tests, we can see the proposed maddelys provides reliable
intensity change direction. Due to the nature rmédir regression model and our time
dependent predictor selection procedure, the naaks not perform particularly well for
the extreme scenarios. In the future study, wd sixplore the nonlinear regression
models fitting extreme distribution such as thebjgror logistic regression (Chu et al.,

2010a) and polish up the time dependent predi@onegtion or selection procedure.
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Appendix: Characteristic model parameter for Typhoon Type A, B, C, D and E

As follows, we provide the simulation results witning the clustering algorithm to the
track records of all typhoons occurred in the vtginf Taiwan from 1951 to 2009 (the
data are from JTWC). Table 1 lists the basic gtesisor each TC type and Table 2

provides the linear coefficients for each TC typalefined in Eq. (1b).

TC Type A B C D E
Probability 0.1757 0.133 0.2106 | 0.2263 | 0.2544
Average Lifespan (Days) | 3.4082 | 4.4912 | 5.3816 | 9.1173 | 8.3875
Average ACE 3.3025 | 6.1507 | 9.2638 | 22.9041 | 22.6494

Table A-1: The general statistics for each TC type.

Type Coefficient | Latitude | Longitude
Beta 0 14.3107 | 118.8524

A Beta_1 0.7008 -2.4477
Beta_2 -0.0192 0.1282

Beta 0 8.2155 | 142.2821

B Beta_1 2.0115 -4.8121
Beta_2 -0.1019 0.158

Beta 0 10.8923 | 152.1922

C Beta_1 1.1943 -5.7349
Beta_2 0.0577 0.3343

Beta 0 14.7819 134.485

D Beta_1 1.6428 -4.3084
Beta_2 0.0288 0.4147
Beta_0 19.4289 | 141.9543

E Beta 1 3.1795 -0.5394
Beta 2 -0.0367 0.2523

Table A-2: The coefficients for each TC type (rafeEq. (1b))
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