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1. Introduction 

 The proposed statistical/dynamical typhoon intensity prediction model is 

essentially a track pattern based Bayesian multi regression model. The data for the 

predictions are based on the numerical weather prediction computer model run by NOAA, 

namely Global Forecast System (GFS).  This project shall provide an operational 

program, through which one can forecast the intensity of a typhoon that may affect the 

vicinity of Taiwan area. Given the nature of GFS data, this model shall provide forecasts 

up to 120 hours ahead in a 6-hour interval. The details of the proposed model are 

elaborated in the following context. 

 

2. Data 

 The backbone of the data used for this project is the NOAA’s GFS data which run 

from 2008 to 2011 and are provided by the Central Weather Bureau (CWB). In 

implementing forecast operation using our model system, the on-line GFS data are 

available on the website nomads.ncdc.noaa.gov. The GFS data are in 0.5 degree by 0.5 
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degree resolution and at 6-hour interval.  Because the GFS data are generated by 

dynamical models and these data are used, our approach can be regarded as a 

statistical/dynamical method.  Toward this project, we conduct the research for the 

typhoons occurred during the period from 2008 to 2011.  Separately, the typhoon tracks 

over the western North Pacific in a 6-hour interval during 2005-2011 are also provided by 

CWB.  In addition, we also used a global Sea Surface Temperature (SST) data to develop 

the maximum potential intensity (MPI) predictor for the forecast system. The daily SST 

data were downloaded from the NOAA website www.ncdc.noaa.gov and in 0.25 degree 

by 0.25 degree resolution. To fit the daily SST data to the 6-hour interval forecast, we 

perform the linear interpolation to get the 6-hour interval SST data.    

 

3. Model Development and Predictor Selection  

 We adopt the statistical forecast model of Chu et al. (2010a).  Essentially, the 

mathematical model is a Bayesian multi linear regression model.  As in Knaff et al. 

(2005), the potential predictors used in this project can be divided into two categories: 1) 

those related to climatology, persistence and trends of typhoon track pattern and intensity, 

termed herein as “static predictors”; and 2) those related to current and future 

environmental conditions, termed herein as “time dependent or environmental predictors”.  

In specifics, in the first part and the second part of this section, we shall 

respectively introduce the track pattern clustering algorithm and the Bayesian multiple 

regression model. Following the similar line suggested in Knaff et al. (2005), in the third 

part of this chapter, we shall address the development of the static part of the operational 

forecast model. In the last part of this section, we shall discuss the inclusion of on-line 
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GFS forecast data and SST data as the backbone of the time dependent part of the 

forecast model.  The potential predictor pool is listed in Table 1-1 and 1-2.  As a side note, 

all predictors are developed using a “perfect prog” methodology (Knaff et al., 2005) 

where the analyses and actual tropical cyclone best track are used. 

 

3.1. Track Pattern Clustering 

 The predictor selection of the proposed forecast model is grounded on a track 

pattern oriented classification scheme. In this research, we shall use a finite mixture 

Gaussian model introduced in Camargo et al. (2007) and Chu et al. (2010b) to solve the 

tropical cyclone (TC) track clustering problem. 

 Based on the assumption that there are a few distinct types characterizing TC 

tracks in a basin of interest, we model each TC track path as a second-order polynomial 

function of the lifetime of this TC.  Mathematically, for each specific track type, the set 

of coefficient of this polynomial function is presumably jointly Gaussian distributed.  

Each TC track type thus has a unique distribution parameter. The space spanned by the 

parameters of this track type model is a linear combination of a set of distinct Gaussian 

distributions.  

 Assuming there are n  observed track records for a given TC. For each record, 

there are three features reported—latitude, longitude, and the time.  We denote the path 

record of a TC and its relative observed time vector for the second order polynomial 

function, respectively, by 
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where latiz ,  and longiz ,  for ni ,..,1=  represent the i -th latitude and longitude record; and it  

represents the time for the i -th records of this TC relative to the first record for ni ,..,1= .  

We further assume that there are K  distinct TC track types in the basin of interest, where 

K  is assumed to be a constant in a given hypothesis or model.  With the model defined in 

Eq. (1a), if a TC is categorized as type k , Kk ≤≤1 , the link function between the TC 

track path and relative time is governed by the following formula 

            εTβz k += , where 
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In model (1b), the parameter set kβ  is distinct for each TC clustering types and ),( ••N  

denotes the normal distribution.  With this model, intuitively one can see that the zero-

order coefficient dual provides the mean genesis location of this clustering type; the first-

order term features the characteristic linear direction of this path type; the second-order 

term determines the recurving shape of the typical path of this type; and the covariance 

matrix (Σ) determines the spread of a particular type.  The noise term in model (1b), iε , 

is assumed multivariate Gaussian with zero mean and a 2 by 2 covariance matrix, kΣ .  

The conditional density for the i-th cyclone, conditioned on membership in the cluster 

type k , is therefore defined as 

 { }2/])'()[(trexp)2(),|( 12/

kiikkii

n

k
n

kii
iiP βTzΣβTzΣθTz −−−= −−−π . (2a) 

In Eq. (2a), operator { }•exp  denotes an exponential function with a natural base; we 

adopt the notation },{ kkk Σβθ = , which is referenced in model (1); and operator tr(.) 

denotes the matrix operation function “trace.” By the definition of a mixture Gaussian 

model, Eq. (2a) leads to the marginal mixture model 
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where, ),|( kiiP θTz  is given by (2a), and kα  is the posterior probability of cluster k , 

which implies 1
1
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=

K
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2
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1 NzzzZ =  be the complete set of all observed 

TC trajectories, and ],...,,[' ''
2

'
1 NTTTT =  be the associated measurement times, then the full 

probability density of Z  given T , the conditional likelihood, is formulated by 
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where ),|( kiiP θTz  is defined in Eq. (2a). Assume that the number of cluster type, K , is 

given (for a real application, we can refer to the literature to choose the proper number 

for this parameter). Because hypothesis selection is not the focus of this section, it is 

proper to choose a non-informative prior for the model coefficients; that is, 1),( ∝kkP αθ  

for model (3). With this non-informative prior assumption, and following the basic Bayes 

formula given in Eq. (1), the posterior distribution for },{ kk αθ  is proportional to the 

conditional likelihood given in Eq. (3).    

 In many real-world applications, only the peak areas of the posterior distribution 

may be of interest. An efficient approach to estimating the mode of the posterior 

distribution is the Expectation-Maximization (EM) algorithm. Given the likelihood model 

(3), in the E-step the membership probability of a TC categorized to each clustering type 

is calculated.  In the M-step, the optimization estimation for the model parameter set of 

each type is calculated.  These include regression parameters, the posterior probability of 

cluster k, and the covariance matrix.  The maximization formula for coefficient parameter 
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k
β̂  and variance parameter kΣ  are derived from a linear Bayesian regression model. The 

details of the formula for the EM algorithm are provided in Chu et al. (2010b). 

 Given the number of clusters and an initial setting of the model parameters, after a 

few iterations, the proposed EM algorithm will converge to a fixed set of parameter 

estimation. Usually, the convergence of an EM algorithm is determined when the 

difference between two iterations is less than a sufficiently small value. Note that these 

convergent values are not necessarily the global optimum estimation and are determined 

by the initial starting values.  Therefore, multiple different initial values should be 

selected and the set of estimation with the maximum likelihood of the observation chosen. 

After applying the aforementioned clustering algorithm to the track pattern data, we 

noticed that there are 5 distinct track pattern types that affect the western North Pacific 

(Fig. 1). 
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Fig. 1: Track pattern type for typhoons affect the vicinity of Taiwan (2005-2011) 

 

In Fig.1, each reported typhoon path from 2005 to 2011 is plotted as a light green curve 

in its category. The black circles in each panel denote the mean track of each type. Some 

typhoon tracks are not distinct and are labeled as “Other”.  Based on the clustering results 

given in Fig. 1, during the 7-year period from 2005 to 2011, there are totally 148 

typhoons, in which 20 Type A, 33 Type B, 17 Type C, 37 Type D, 29 Type E, and 12 

other type. We thus shall first develop the static predictor set for each of these 5 types. 

 

3.2 Bayesian Regression Model 

Throughout this report, )(•Normal  denotes the normal distribution, which is the 

foundation of the proposed regression model. In details, the classical Bayesian linear 

regression model can be formulated as follows 

),|(~,,| 22
NNormal IXβZXβZ σσ , where, specifically

 

],...,,[' ''
2

'
1 NXXXX = , NI  is the NN ×  identity matrix, and 

],...,,,1[ 21 iKiii XXX=X  is the predictor vector for iZ , Ni ,...,2,1= , 

]',...,,,[ 210 Kββββ=β .       (4a) 

In (4a), iZ  denotes the change in intensity for the i -th observation (for example, it can 

denote the 6-hour interval change); iX  denotes the selected predictor set for iZ ; β  is the 

regression coefficient vector, in which specifically 0β  is referred to as the intercept. 

Given the current intensity and intensity change forecast, the intensity forecast is 

obtained by adding the intensity change forecast and the current intensity measure. 
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Sometimes one may pay more attention on the probability if the typhoon intensity shall 

increase or decrease after a given time interval. Under this kind of scenario, a probit 

regression model is more appropriately. A probit regression model is very similar to the 

regression model defined in (4a). The only difference is that, the target variable Z  

defined in (4a) becomes a latent variable, such that 
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The inference solution for Model (4a) or (4b) can be found in most classical Bayesian 

analysis literatures. Towards the operational model and analysis results given in this 

report, we shall provide the technical details of the theoretical inference solution for the 

regression model (4a) as follows (Gelman et al. 2004). 

 The regression model (4a) in literatures is often referred to as “Ordinary Linear 

Regression”. To solve this model, one usually chooses the non-informative prior for the 

model parameters )}log(,{ 2σβ . That is, 

 22 ),( −∝ σσβP         (5a) 

With this prior, the posterior distribution for the model parameters can be derived as: 

 ),|(*),,|(),|,( 222 ZXZXβZXβ σσσ PPP = , in which 

 ),ˆ(~),,|( 22 σσ ββZXβ VNormalP  , 

 ),(~),|( 222 sKNInvP −− χσ ZX , where  

 1)( −= XXβ

TV , 

 ZXXXβ
TT 1)(ˆ −= , 

 )ˆ()ˆ(
12
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= T

KN
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In (5b), )(2 •− χInv  denotes the inverse 2χ  distribution.  

 When a new predictor set X
~

 is available (such as through the GFS system), the 

inference for the intensity change for the next time interval is provided by: 

  ))
~~

(,ˆ~
(~),,

~
|

~
( 2 T

KN VstP XXIβXZXXZ β+−      (5c) 

In (5c), 2s , β̂  and βV are calculated in (5b) and the right hand side distribution )(•−KNt  

denotes a multivariate t distribution with a form following standard convention. When the 

number of sample N is much larger than the predictor dimension K, the t distribution in 

(5c) can be well approximated by a normal distribution with mean βXˆ~
 and variance 

matrix )
~~

(2 TVs XXI β+ . 

  In the following context of this report, the regression model (4a) and its 

theoretical solution (5) for this regression model shall serve as the backbone for the 

layout of the analysis results and discussions of the rest of this report. 

 

3.3 Static Predictor Selection 

 In the static predictor selection phase, we consider 8 potential candidates for the 

forecast for change in intensity after present time: 1) change in intensity before present 

time (DVMX); 2) current intensity (VMAX); 3) storm translational speed (SPD); 4) 

latitude at present time (LAT); 5) longitude at present time (LONG); 6) absolute value of 

yearday minus 248 (JDAY); 7) days after VMAX larger than 18m/s (RDAY); and 8) 

absolute value of RDAY minus one third of this typhoon type’s expected life span 

(ARDAY, refer to Table A-1 for the expected life span used in this study). The candidate 

pool described above is summarized in Table 1-1. 
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Predictor Description 

DVMX Intensity change before the present time 

VMAX Current intensity 

SPD Storm translational speed 
LAT Latitude 

LONG Longitude 

JDAY Absolute value of yearday minus 248 

RDAY Value of days after VMAX larger than 18 m/s 

ARDAY Absolute value of RDAY minus 1/3 of the expected life span of its type (Table A-1) 

  

Table 1-1: The potential static predictors used in the model 

 

3.4 Time-Dependent Predictor Selection 

 In this subsection, we shall focus on developing the time dependent or 

environmental predictors. The candidate pool of time dependent predictors is basically 

divided into three categories. The first one is those related to temperature field, including 

SST, T200 (temperature at 200 hPa level) and T925 (temperature at 925 hPa level).  The 

second category includes those related to moisture field, including the relative humidity 

(RH) at high level (RHHI, which is the average of RH at 300 hPa, 350 hPa, 400 hPa and 

450 hPa) and relative humidity at low level (RHLO, at 925 hPa). The third one is those 

related to wind and pressure fields, including the vertical wind shear (SHRD), relative 

vorticity (RV, at 850 hPa), and sea level pressure (SLP).   Hereby, SHRD essentially 

measures the wind difference between low level and high level (850 hPa and 200 hPa 

respectively), which is calculated by the formula:  

 ∑
=

−+−=
200

850

22 )()(**4
p

ppp vvuuwSHRG      (6) 
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In (6), ∑
=

=
200

850

*
p

pp uwu is the deep layer zonal wind; ∑
=

=
200

850

*
p

pp vwv  is the deep layer 

meridional wind; and pw  is mass weight, which is set as 0.5 for all the simulations in this 

report.  For each of these predictors, we shall take the area-average from the GFS values 

in the shaded area illustrated in Fig. 2. In specific, the center of the two circles in Fig. 2 is 

the center of the current eye of the target typhoon. The inner circle has a radius of 200 km 

and the outer circle has a radius 800 km. There are three exceptions. For SST and SLP, 

we choose the data at the eye of a TC. For RV, we choose the area that is within a circle 

with radius 1000 km. 

 

1600 km

400 km

 

Fig. 2 The area for potential track based time dependent predictors 
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Predictor Description 

MPI Maximum potential intensity defined in Eq. (7) 

MPI2 MPI squared 

T200 Area average temperature at 200 hPa 

T925 Area average temperature at 925 hPa 
RHLO Area average relative humidity at 925 hPa 
RHHI Area average relative humidity at 300, 350, 400, 450, 500 hPa (average) 

SHRG Generalized 200-850 hPa vertical wind shear defined in Eq. (6) 

RV850 Area average (0-1000km) 850 hPa relative vorticity 

SLP Sea level pressure 
  

Table 1-2: The potential environmental predictors used in the model 

 

The primary use of the SST is to determine the upper bound of tropical cyclone intensity 

as a function of SST, which is commonly referred to as the maximum potential intensity 

(MPI). The SST values are determined at the typhoon center and we adopt the same 

procedure to develop the MPI as in Knaff et al. (2005). The formula of MPI given SST is: 

  ))(*exp(* 0TTCBAMPI −+=       (7) 

In (7), A = 38.21 knots (or 19.66 m/s), B = 170.72 knots (or 87.82 m/s), C = 11909.0 −Co ,  

CT o0.300 =  and T is in the unit of Co .  The candidate time dependent predictor pool is 

summarized in Table 1-2, in which the “area average” without specification denotes the 

average over the area defined in Fig. 2 centered at the eye of the TC. 

 In both Section 3.3 and Section 3.4, upon the predictors are chosen, the regression 

model is set, which applies a stepwise procedure to select variables from the predictor 

pool at each forecast time. The significance of each candidate predictor is based on a 

standard two tail F-test and the operational threshold is set as 99%. Once a predictor is 

chosen, we shall normalize this variable with respect to its time span.  
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4. Results and Discussions 

 In this section, we shall provide the simulation results and discussions with 

applying the proposed forecast framework to the data described in Section 2. To evaluate 

the model performance, we shall perform a leave-one-out cross-validation (LOOCV). 

The results thus shall be compared with the climatology and persistence (CLIPER) and 

the benchmark STIPS model developed in Knaff et al. (2005). We also assess the model 

performance using the same model development approach without using the track pattern 

classification (that is, no TC track type is involved). Throughout this report, we denote 

the track pattern classification based model as “Model Cluster” and the one without as 

“Model General”.  

 We applied the proposed forecast model to the typhoons occurred in the WNP 

during the period 2008 to 2011 (totally 76 typhoons). To compare with non-Bayesian 

benchmark forecast models “CLIPER” and “STIPS”, we shall use the mean output as the 

forecast of the models developed in this research (“Model Cluster” and “Model General”).  

The potential forecast capability of model is measured by the conventional percent 

variance explained (2R ), mean absolute error (MAE), and prediction standard error (SE, 

the standard deviation of forecast error) in this study. In specific, 2R  is positive oriented, 

which ranges from 0 to 1. The closer is 2R  to 1, the better skill a forecast model is. On 

the other hand, MAE and SE are very similar and both of them are negative-oriented and 

ranges from 0 to infinity. That is, the closer is MAE or SE to 0, the better a forecast 

model is. Due to the non-linearity characterized by TC intensity change, we deem MAE 

is a more robust statistics than SE as a forecast skill measure for this study.  
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TC Type Model Measure 6-hour 12-hour 24-hour 36-hour 48-hour 
R2 (%) 27.4 53.4 81.3 68.1 73.6 
MAE 1.57 2.15 2.70 4.65 4.83 

Model 
Cluster 

SE 2.23 2.87 3.50 6.90 6.14 
R2 (%) 31.1 45.8 61.6 60.4 46.6 
MAE 1.55 2.20 4.00 5.64 6.71 

Model 
General 

SE 2.17 3.12 5.02 7.16 8.74 
MAE 1.54 2.89 6.28 9.19 10.10 

A 

CLIPER 
SE 2.59 4.16 8.05 11.35 11.79 
R2 (%) 28.7 39.5 57.2 72.1 80.4 
MAE 1.80 2.84 4.36 4.47 4.13 

Model 
Cluster 

SE 2.60 3.90 5.57 5.68 5.25 
R2 (%) 30.2 37.1 47.4 55.8 64.4 
MAE 1.77 2.9 4.82 5.71 5.85 

Model 
General 

SE 2.57 3.97 6.19 7.22 7.13 
MAE 1.72 3.23 5.94 7.76 9.40 

B 

CLIPER 
SE 3.07 4.99 8.49 10.73 11.85 
R2 (%) 19.7 43.9 65.0 77.2 88.4 
MAE 2.14 3.08 4.17 4.08 3.38 

Model 
Cluster 

SE 2.95 4.02 5.68 5.8 4.74 
R2 (%) 30.8 46.1 66.5 80.2 87.0 
MAE 1.96 2.88 4.32 4.45 4.30 

Model 
General 

SE 2.68 3.92 5.48 5.37 5.07 
MAE 1.88 3.59 7.15 9.87 11.74 

C 

CLIPER 
SE 3.21 5.34 9.45 12.02 13.85 
R2 (%) 21.5 45.7 61.3 72.7 80.2 
MAE 2.16 3.17 4.97 5.88 5.52 

Model 
Cluster 

SE 3.08 4.19 6.35 7.27 7.25 
R2 (%) 26.5 41.0 55.8 68.8 76.2 
MAE 2.07 3.38 5.59 6.54 6.55 

Model 
General 

SE 2.95 4.36 6.82 8.00 8.20 
MAE 2.23 4.20 8.14 11.48 13.95 

D 

CLIPER 
SE 3.45 5.67 10.17 13.87 16.28 
R2 (%) 28.4 40.4 65.7 72.2 81.0 
MAE 1.70 2.53 3.25 3.47 3.63 

Model 
Cluster 

SE 2.41 3.46 4.20 4.53 4.90 
R2 (%) 32.5 36.9 47.6 48.3 55.0 
MAE 1.67 2.68 4.32 5.27 5.86 

Model 
General 

SE 2.32 3.55 5.29 6.50 7.08 
MAE 1.45 2.69 4.90 6.32 9.03 

E 

CLIPER 
SE 2.82 4.44 7.14 8.54 11.18 

 
 

Table 2: Static model forecast performance for each TC type. “MAE” denotes “mean absolute error”; “SE” 

denotes “standard error”, both in the unit “m/s”.  
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 Based on the predictor selection procedure described in Section 3.3 and 3.4 (in 

significance level 0.01), we generate our regression model for each typhoon type 

respectively. For each simulation, we also generate another independent model, which 

adopts the same predictor selection procedure without using the cluster classification 

described in Section 3.1. For the model evaluation, we apply a strict LOOCV procedure 

for each of the 76 typhoons occurred in the western North Pacific (WNP) from 2008 to 

2011. The results are provided in Table 2 (along with CLIPER). To be noted, due to the 

limited number of samples for some TC types because of the short time period of the 

GFS data (i.e., only 4-yr), we only provide up to 48 hours lead forecast for the “Model 

Cluster” (Table 2 and 3) to avoid the potential model evaluation bias.  For 12-hr forecast,  

the “Model Cluster” generally has smaller MAE relative to the “Model General” and 

“CLIPER” (Table 2).   This is most clearly for Type D which affects the Taiwan area the 

most (Fig. 1).  For longer lead times (24- to 48-hr), the forecast skill of “Model Cluster” 

distinguishes itself even more from the other two benchmark systems.    

Model Measure 6-hour 12-hour 24-hour 36-hour 48-hour 60-hour 72-hour 
R2 (%) 24.8 43.3 62.6 72.9 81.4 NA NA 
MAE 1.89 2.83 4.15 4.61 4.36 NA NA 

Model 
Cluster 

SE 2.71 3.82 5.43 6.05 5.77 NA NA 
R2 (%) 29.4 39.8 53.3 62.1 69.8 78.3 78.3 
MAE 1.83 2.92 4.79 5.66 5.83 5.58 5.79 

Model 
General 

SE 2.60 3.92 6.05 7.12 7.33 6.99 7.39 
MAE 1.80 3.40 6.54 8.93 10.80 12.94 14.62 CLIPER 
SE 3.10 5.05 8.84 11.56 13.34 14.99 15.86 
R2 (%) NA 40.0 49.4 54.6 57.7 59.6 61.2 STIPS 
MAE NA 2.88 4.78 6.22 7.56 8.75 9.57 

 

Table 3: Static model forecast performance comparison over all TCs through 2008-2011. “MAE” denotes 

“mean absolute error”; “SE” denotes “standard error”, both in the unit “m/s”. The model performance 

measure of “STIPS” is from Table 6 of Knaff et al. (2005). 

 



 16 

 We also summarize the model performance statistics over all 76 typhoons in 

Table 3,  in which we also include the performance of the benchmark forecast model 

STIPS developed in Knaff et al. (2005). The performance results in Table 3 can be 

further visualized in Figure 3, from which we can see that, for short time lead forecast (6-

hr), the benchmark model “STIPS”, the “Model General” and the proposed track pattern 

classification based “Model Cluster” deliver very similar performance. However, for 

longer lead times, the “Model Cluster” unanimously outperforms the “Model General”. 

Throughout the lead time span we tested, “Model General” always performs better than 

the benchmark “STIPS” and much better than the simpler “CLIPER” approach. The 

similar performance comparison conclusion between “Model Cluster” and “Model 

General” can also be drawn from Table 2.  

 

Fig. 3 Model performance comparison 
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TC Type 6-hour 12-hour 24-hour 36-hour 48-hour 
A MPI (0.45) SHRG (-0.59) SHRG (-0.62) RHLO (-0.55) VMAX(-0.60) 
B MPI (0.44) LONG (0.49) LONG (0.57) LONG (0.56) VMAX (-0.62) 
C MPI (0.50) MPI2 (0.60) MPI2 (0.67) LAT (-0.74) LAT (-0.78) 
D MPI2 (0.47) MPI2 (0.54) MPI2 (0.57) MPI2 (0.57) VMAX (-0.64) 
E MPI (0.51) MPI (0.54) MPI (0.58) SHRG (-0.57) VMAX (-0.64) 

 

Table 4: The most significant predictor for each forecast model (“Model Cluster”) in Table 2. The number 

after each predictor in the table is its respective correlation coefficient.  

 

 In Table 4, we provide a list of the most important (significant) predictors for 

each lead time forecast model of each track type. Not surprisingly, the SST related MPI 

and the vertical wind shear (SHRG) are almost always important for the forecast. 

 

Three examples 

  

 In the following context, we shall provide three examples as the case study to 

illustrate the details of the proposed statistical forecast model, “Model Cluster”.  In all 

three examples, we shall respectively provide a probabilistic forecast. We also want to 

discuss a few key points of using this forecast model with the aid of the explicit examples. 

In the first step of each example, we assume that we have run the track pattern based 

clustering algorithm over all the typhoons occurred in the past (e.g., 2005-2011). 

Therefore, we have had the 0th-order, the 1st-order and the 2nd-order coefficients (Eq. 1b) 

for each typhoon type. In this study, we adopt the results obtained in Chu et al. (2010b). 

The details of the key results are given in the Appendix and the detail procedure is 
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described in Section 3.1. With the track coefficient of each TC typhoon, for a given TC 

track record, one can measure its distance to the mean or regressed track for each type. In 

the end, choose the cluster type that is closest to the track pattern of this TC. 

 Based on the coefficient table given in Table A-2, we decide Typhoon Melor in 

2009 belongs to Type C.  In an operational setting, the belonging of an on-going typhoon 

to a particular path type is not known a priori.  However, users may first consult the 

predicted typhoon trajectory and compare it to the mean track of each typhoon track 

cluster (Fig. 1 and Table A-2) as a basis for decision. Following the procedure detailed in 

Section 3, we have the model for 6-hour lead forecast for this typhoon. And the result is 

given in Figure 4. In Fig. (4a), we first show the mean of the probabilistic forecast of the 

proposed model (solid line). Based on the distribution derived from (5c), we also provide 

the upper quartile (P(intensity) < 0.75) and the lower quartile (P(intensity) < 0.25)  of the 

forecast (both in dotted lines). The distance between these two bounds shows the 

variation of forecast. Conceptually, the smaller the SE of a model forecast is, the better 

(or accurate) the model is.  Similarly, the detailed forecast results for Typhoon Morakot 

are shown in Fig. 5 and the results for Typhoon Nanmadol are shown in Fig. 6. 

 In all three examples, we can see most of the true observed intensity measures are 

well bounded by their relative intensity forecast upper quartile and lower quartile (Fig. 4a, 

5a, 6a). It’s also worth noting that, in all Fig. 4b, 5b and 6b,, the forecast model indeed 

provides right intensity change directions in most of the time, however it does not 

perform well when the typhoon intensity has drastic change (say larger than 10 m/s in 6 

hours). All these three examples illustrate a shortcoming of the proposed model. That is, 

a linear regression model is only optimum when observation noise is normally distributed. 
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However, the abrupt surge or drop of TC intensity behaves more like an extreme 

distribution with a very long tail. Also, the proposed model use a macro-scale (mostly 

within 200-800 km) area average, which would smooth out the regional weather signal.   

Nevertheless, the forecast skill of our approach is still better than the CLIPER (Table 5).  

  

 

Fig. 4a: 6-hour lead forecast for the intensity of typhoon “2009 Melor.”  The upper and 

lower quartiles of the forecasts are indicated by red broken lines. 
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Fig. 4b: 6-hour lead forecast for the intensity change of typhoon “2009 Melor.” 
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Fig. 5a: 6-hour lead forecast for the intensity of typhoon “2009 Morakot.”  The upper and 

lower quartiles of the forecasts are indicated by red broken lines.  
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Fig. 5b: 6-hour lead forecast for the intensity change of typhoon “2009 Morakot.” 
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Fig. 6a: 6-hour lead forecast for the intensity of typhoon “2011 Nanmadol.” The upper 

and lower quartiles of the forecasts are indicated by red broken lines. 
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Fig. 6b: 6-hour lead forecast for the intensity change of typhoon “2011 Nanmadol.” 

 

 

Model Cluster CLIPER Typhoon Name 
R2 (%) MAE SE MAE SE 

2009 Melor 35.6 2.44 3.23 2.65 3.93 
2009 Morakot 19.8 2.01 2.92 2.06 2.99 
2011 Nanmadol 40.7 1.98 2.61 2.49 3.34 

 
Table 5: Summary of the performance measure for the case studies 
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 In summary, we have developed a statistical/dynamical approach for forecasting 

typhoon intensity’s probabilistic distribution. We have proven the mean output of the 

proposed model outperforms the benchmark forecast model CLIPER and STIPS. The 

model is featured with three highlights. The first one is that it is grounded on a track 

pattern based classification. Second, it involves both static predictors, such as current 

location, current intensity, and time dependent environmental variable related to 

temperature, wind, and moisture fields. Third, it provides a probabilistic forecast of the 

typhoon intensity, which provides a variation of the forecast rather than a single as do in 

most benchmark models.  

 With all the tests, we can see the proposed model always provides reliable 

intensity change direction. Due to the nature of linear regression model and our time 

dependent predictor selection procedure, the model does not perform particularly well for 

the extreme scenarios. In the future study, we shall explore the nonlinear regression 

models fitting extreme distribution such as the probit or logistic regression (Chu et al., 

2010a) and polish up the time dependent predictor generation or selection procedure.       
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Appendix: Characteristic model parameter for Typhoon Type A, B, C, D and E 

As follows, we provide the simulation results with running the clustering algorithm to the 

track records of all typhoons occurred in the vicinity of Taiwan from 1951 to 2009 (the 

data are from JTWC). Table 1 lists the basic statistics for each TC type and Table 2 

provides the linear coefficients for each TC type as defined in Eq. (1b). 

  

TC Type A B C D E 
Probability 0.1757 0.133 0.2106 0.2263 0.2544 

Average Lifespan (Days) 3.4082 4.4912 5.3816 9.1173 8.3875 
Average ACE 3.3025 6.1507 9.2638 22.9041 22.6494 

 

Table A-1: The general statistics for each TC type. 

 

Type Coefficient Latitude Longitude 
Beta_0 14.3107 118.8524 
Beta_1 0.7008 -2.4477 A 
Beta_2 -0.0192 0.1282 
Beta_0 8.2155 142.2821 
Beta_1 2.0115 -4.8121 B 
Beta_2 -0.1019 0.158 
Beta_0 10.8923 152.1922 
Beta_1 1.1943 -5.7349 C 
Beta_2 0.0577 0.3343 
Beta_0 14.7819 134.485 
Beta_1 1.6428 -4.3084 D 
Beta_2 0.0288 0.4147 
Beta_0 19.4289 141.9543 
Beta_1 3.1795 -0.5394 E 
Beta_2 -0.0367 0.2523 

 

Table A-2: The coefficients for each TC type (refer to Eq. (1b)) 
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