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1. Introduction

This is a summary of our consulting project with the CWB in Taiwan. It entails a
demonstration on the workings of the FSU downscaled superensemble for high resolution
precipitation forecasts over the Taiwan Region for June 2008. This work is based on our

recent work :

Krishnamurti, T.N., A.K. Mishra, A. Chakraborty, and M. Rajeevan, 2009: Improving
Global Model Precipitation Forecasts over India Using Downscaling and the FSU

Superensemble. Part I: 1-5-Day Forecasts. /Mon. Wea. Rev./, *137*, 2713-2735.

This work carries eight components:

a) Collecting radar /satellite based rainfall and interpolate, where necessary, all to a 1.2km
resolution.
b) Prepare high resolution gridded rainfall files for the Taiwan region at 1.2 km covering

the months May and June of the years 2006 and 2007 and for June 2008 . Interval of



rainfall totals 24 hourly per day.

c) Collect large scale multimodel forecasts from a suite of operational models.

d) Downscale all multimodel forecasts using the observed radar/satellite based rains
covering each model and each day of forecasts through day 5.0Obtain the downscaling
slope and intercept coefficients for each model over entire domain for the training period.
e) Carry out multimodel superensemble using the downscaled supereensemble
methodology during training phase to obtain weights for the forecast superensemble.

f) From the member model forecasts during the forecast phase first carry out the
downscaling of member model forecasts for each model using the slope and intercept
coefficients of step d.

g) Using the weights of the downscaled multimodel superensemble carry out multimodel
superensemble forecasts from the entire suite of models through day 5 of forecasts.

h) Apply skill metrics to evaluate each forecast over the Taiwan Domain .

We shall be presenting these results here and we are willing to demonstrate this work in

detail. These are for the year 2008.

The following Tables and appendices are provided here:

Table 1 List of member Models.

Appendix 1 Superensemble Methodology

Appendix 2 Downscaling Algorithm

Appendix 3. Skill score METRICS



2. Rainfall data sets.

Taiwan CWB provided the radar data sets that carried rainfall at a resolution of
1.2km over Taiwan. Our computational Taiwan domain is somewhat bigger, it covers
21.5N to 26N and 118E to 123.5 E . To cover the oceans around Taiwan we have
incorporated the TRMM 3B42 data sets and merged the two data sets. The TRMM data
sets are available for download from their web site easily on a 3 hourly basis at 25 km
horizontal resolution. Radar data takes precedence over TRMM where radar data are
available. The TRMM data is simply linearly interpolated to the 1.2km resolution and all
final observed rain is at the 1.2 km resolution. This data sets covers, for training, daily
totals for May and June of the years 2006 and 2007 and for the forecast phase it covers the
month of June for the year 2008 . Sample rainfall illustrations are provided in the

illustrations to follow.

3. Forecast results over the Taiwan Area during June 2008.

The training phase consisted of 5 day daily forecasts from the downscaled
superenesmble over the Taiwan area covering the periods May, June for the years 2006
and 2007. This 4 months of training provided robust results for the superensemble weights.
Minimally 120 days of training days seem to equilibrate the training weights. The
downscaled resolution is 1.2 km. the model resolutions are provided in Table 1. We shall
sequentially describe the forecast phase results, this phase covered the entire month of

June 2008.



Figs 1 and 2 show the equitable threat scores and the bias scores( See appendix
2) respectively for day 1 of forecasts for this entire month. This includes the suite of
models shown in Table 1. The abscissa of Fig 1 are the thresholds, i.e. 25 mm/day or
above carries the highest equitable threat score in this one day forecast from the
multimodel downscaled superensemble. Over all the multimodel superensemble carries
the best forecast. The best single model of this suite is the UK Met model. The
improvements from the downscaled multimodel superensemble are very significant.
For low rain rates, i.e. less than 5 mm/day, the improvement over the best model is small,
same is true for very high rain rates above 50mm/day. For moderate rain rates, such as
25mm/day, which is still quite heavy rain, the improvements are very large. This was a
consistent result and this can be easily implemented by the Taiwan CWB for their interests.
The bias score is illustrated in Fig 2. As seen in appendix 2, a bias score of 1.0 is
considered the best forecast. As can be seen in Fig 2 the best bias scores are carried by the
multimodel for all rain rate thresholds. The abscissa of Fig 2 carries these thresholds and
the ordinate denotes the bias scores. Most models carry very large bias errors, such as the
GFS which has bias errors around 4 for moderate rains..This is another significant
contribution of the downscaled multimodel superensemble for day 1 of forecast. For day
3 of forecasts shown in figs 3 and 4 the ETS scores and their bias scores respectively, The
results again confirm essentially the same superiority of the skill of precipitation forecasts
for the downscaled multimodel superensemble as compared to all member models. The
ETS scores on day 3 are in fact quite a bit higher compared to day 1 of forecasts. This has
to do with the member model spin up of precipitation. The bias scores on day 3 are a bit
less for the downscaled superensemble, being closer to 2.0 as against day 1 of forecast

when they were closer to 1.0. Nevertheless the downscale superensemble carries the best



bias scores compared to all member models in a rather consistent manner for days 1
through 3 of forecasts. What this means is that CWB can issue a downscaled forecast for
precipitation at 1.2km resolution that would be consistently superior to the forecast

provided by the best model available to them.

Infigs5 we show the entire month June 2008, rainfall totals from day 1 of
forecasts. and the area averaged skills. The total area averaged rain is shown on top inset
in each diagram, the bottom insets include the rms errors and the spatial correlations. The
bottom scores and the details of patterns are most important. The pattern of details on
mesoscale are best seen from the superensemble that carries the least rms errors and the
highest spatial correlations as compared to all member models. The JMA model carries a
spatial correlation of 0.09 whereas using the downscaled superensemble it is possible to
improve that to 0.93. This is what the downscaled superensemble is all about. This also

captures many details on the high resolution.

In figures 6 through 13 we present several sample forecasts of day 1 of forecasts.
These show the rainfall patterns and the rms/pattern correlation skills for each of many
days during June 2008 . The downscaled superensemble clearly carries mesoscale details
that are not present in the results of forecasts of the large scale member models, nor are
they seen in their ensemble mean. Almost every single downscaled superensemble
forecast shows the lowest rms forecast skill and the highest value for the spatial
correlation. In this sense these forecasts from the downscaled superenesmble forecasts are
very consistent .They nearly always perform better than all member models. The
mesoscale precipitation forecast details are very impressive for the Taiwan region, that

was the goal of this study.



Similar high skills were noted for days 2 and 3 of forecasts But the skills seem to
slowly decrease by day 5 of forecasts. Sample day 5 of forecasts are illustrated in figures
14 through 16.Even though the forecasts skills had gone lower by day 5 of forecasts, those
from the downscaled multimodel superensemble were still somewhat better than those of
the best model. . ECMWEF did carry high forecast skills, but theirs were large scale rainfall
patterns, the downscaled superenesemble carried mesoscale rainfall patterns with a skills
comparable or higher than those of ECMWF for day 5 of precipitation forecasts. Most
models carried very low skills at day 5. Having the ECMWEF in this suite of models for
this longer range day 5 of forecast was very helpful. Our recommendation to CWB is
that they include ECMEF model in their multimodel suite if they wish to go as long as day

5 of forecasts.

In figures 17 through 21 we show maps of temporal correlatioons for the
forecasts for the entire month June 2008. This includes forecasts for days
1, 2,3 and b. We show these results for b best models, the ensemble mean,
the bias corrected ensemble mean and the downscaled multimodel
superensemble. Overall again the results seem to confirm that the overall
temporal correlations for the Taiwan Domain are best provided by the
downscalled multimodel superensemble as comapred to all member models and
the ensemble mean ensemble mean. We also show a bias corrected ensemble mean
here, whose performance was close to that of the multimodel downscaled
superensemble. Overall the results do degrade by day 5 of forecasts but the
results from the downscaled multimodel superensemble defines the current

state of the art.



Table 1 TIGGE Models

Center Ensemble members Model resolution (lonxlat) Forecast length
ECMWF il N200 (Reduced Gaussian| 10d
ECMWF il N128 (Reduced Gaussian| 10-15d
UKMO b 125" x0.88" 15 d
JMA il 1.25°x1.25° 04
NCEP )| 1007 1.00° 16d
(MA [5 0,567 %056 10d
CMC ) 1.00° x1.00° 16d
BOM 33 LA0"x Lo0° 10d
MF 1l LA % 130° 25d
KMA 17 L.00°%1.00° 10d
CPTEC 15 100" % 1.00° 15d
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Figure 18:

Temporal Correlation for Multimodels Day 7 forecasts during June 2008
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Figure 19:

Temporal Correlation for Dayl Multimodels forecasts during June 2008
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Figure 20:

Temporal Correlation for Day3 Multimodels forecasts during June 2008

29



CMA

ON
118.5E 120E 121.5E 123E

ON
118.5E 120E 121.5E 123E

UKM

27N 27N

£

E
|
=
3
i
'

26N 26N

28N 25N

24N 24N
23N 23N

22N 22N

v
‘#iiw \m“ .

®

21N 21N

d
l

20N

ON
118.5E 120E 121.5E 123E 118.5E 120E 121.5E 123E

27N

26N

25N
24N
23N
22N

21N

25N
24N
23N
22N

21N

ON
118.5E

20E121.5E123E

M
=
=
¥
v

wlh“‘

20N

27N

26N

25N

24N

23N

22N

21N

N
118.5E 120E 121.5E 123E

IMMI‘"""I'I*“'""“'M
L
“Mrjkrﬂﬁ'

T

|

118.5E 120E 121.5E 123E

0.15 0.2 025 03 0.35

Figure 21:

0.4

0.45 0.5 0.55

0.6

0.65

Temporal Correlation for Dayb5 Multimodels forecasts during June 2008

30



APPENDIX-1
Multimodel conventional superensemble

The notion of the multimodel superensemble for weather and seasonal forecasts was first
proposed by Krishnamurti et al. (1999). This method is based on producing a weighted
average of model forecasts to construct a superensemble forecast. This procedure carries
two phases: training and prediction. During the training phase past forecasts from a
number of member models and the corresponding observed (analyzed) fields are used.
The training entails determining statistical weights for each grid location in the
horizontal, at all vertical levels, for all variables, for each day of forecasts and for each
of the member models.

The constructed forecast is
N

§=0+2a,(F -F)

i=1

where S is superensemble prediction, Ois the observed climatology; a; is the

weight for the i" member in the ensemble; and F, and Fi are the forecasts and

forecast climatological values for the training period, respectively, for the i" model’s
forecast. The summation is taken over the N member models of the ensemble.

The weight a, are obtained by minimizing the error term G, written as

Nlrain , ,
G= Z(St _Ot)z
i=1
where N, is the number of time samples in the training phase, S,and O, are the

superensemble and observed field anomalies, respectively, at training time t.

Following is the illustration
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Superensemble Methodology
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Statistical weights obtained in

the training phase are passed

on to the forecast phase.
[ In addition to removing the bias, the superensemble scales the individual model forecasts
contributions according to their relative performance in the training period in a way that,
mathematically, is equivalent to weighting them.

Figure Al
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Appendix-2

Statistical downscaling

Given the forecasts of precipitation from a number of forecast models, our downscaling
for model precipitation follows three steps.

1) Coarse resolution precipitation data from various models are bi-linearly
interpolated to the grid resolution of the observed datasets. This is done for each
day of forecast for each model. Where “*daily rain’’ refers to 24-h precipitation
accumulation between 1200 and 1200 UTC the next day.

2) A time series of the interpolated rain is made for each model at every grid point
and for each day of forecast separately (i.e., the string of day-1 forecasts). The
same procedure is followed to generate strings for the day-2, -3, -4, and -5
forecasts. For each forecast lead time we have a string of high resolution, rain
gauge-based rainfall observations. This provides an observational string.

3) The downscaling strategy involves a linear regression of the time series of the
data at each grid point:

Y, =aX, +b
Where X, are the rainfall forecasts (separately handled for each day and that had been
subjected to bilinear interpolation), Y; are the observed counterparts, a is slope and b is
intercept.
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Appendix-3

1 l N . 12
RMS error = [F;U‘“ — Op) ‘| .
1 J"l'r
Systematic error (Bias) = EZI: (fa — On).

Anomaly correlation

Sl — €n) (00 — )]

. . 1/2
G — e S (on— )]

(AC =0.6 for useful forecast skill).

Correlation coefficient
il n = f)(0n — 0)]
S G- PPN (o 0]
(—1<c<1).
H—(Fx§)
F+0—H—(Fx§)
(0<ETS<1).

Equitable threat score =

Jh\'r
Bias = —*"r.
N

a1

In these expressions:

N = number of grid points

fn = forecast value at grid point n

o, = observed value at grid point n

¢, = climatological (mean) value at grid point n
f =area mean of the forecasted values

o= area mean of the observed values

F =area where event is forecasted

() = area where event is observed

H =hit area, or overlap of areas F and O

Ne=number of grid points where event is
forecasted

N,=number of grid points where event is
observed.
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