
1 
 

交通部中央氣象局委託研究計畫期末報告 

 

 

發展西北太平洋年颱風頻率機率預報方法 

 

 

 

計畫類別：□國內    ■國外 

計畫編號：MOTC-CWB-98-3M-01 

執行期間：98 年 2 月 23 日至 98 年 12 月 31 日 

計畫主持人：朱寶信 

執行單位：Climate Systems Enterprise 

 

 

 

 

 

中華民國 98 年 11 月 



2 
 

98 年度政府部門科技計畫期末摘要報告 
計畫名稱： 發展西北太平洋年颱風頻率機率預報方法 
 
審議編號： x 部會署原計畫編號： MOTC-CWB-98-3M-01 
主管機關： 交通部中央氣象局 執行單位： Climate Systems 

Enterprise 
計畫主持人： 朱寶信 聯絡人： 朱寶信 
電話號碼： 808-956-2567 傳真號碼： 808-956-2877 
期程： 98 年 2 月 23 日至 98 年 12 月 31 日 
經費：（全程） 73 萬 5 仟元 經費(年度) 73 萬 5 仟元 
 
執行情形： 
1.執行進度： 

 預定（％） 實際（％） 比較（％） 
當年 100 100 0 
全程 100 100 0 

 
2.經費支用： 

 預定 實際 支用率（％） 
當年 735,000 735,000 100 
全程 735,000 735,000 100 

 
3.主要執行成果： 
(1) 以貝式方法應用在 Poisson regression model 上成功的發展出預報西北太平洋

颱風頻率的機率預報。 
(2) 完成 2009 年西北太平洋颱風個數機率預測及校驗。 
(3) 完成以西北太平洋主要颱風路徑類型發展具有區域特性的颱風個數機率預

測方法。 
 

4.計畫變更說明： 
無 

 
5.落後原因：  
無 

                                                               
6.主管機關之因應對策（檢討與建議）： 
  



3 
 

Development of Probabilistic Forecast Models for Seasonal Typhoon 

Frequency over the Western North Pacific 

(MOTC-CWB-98-3M-01) 

 

 

 

 

 

Pao-Shin Chu 

Climate Systems Enterprise 

Honolulu, Hawaii 

U. S. A. 

 

 

 

 

 

 

 

 

 

 

 

 

November 27, 2009 



4 
 

Development of Probabilistic Forecast Models for Seasonal Typhoon 

Frequency over the Western North Pacific 

(MOTC-CWB-98-3M-01) 

 

Pao-Shin Chu 

Climate Systems Enterprise 

Honolulu, Hawaii, U. S. A. 

November 27, 2009 

 

1.  Introduction 

  

Our current effort is to develop a Poisson or probit regression model to 

forecast seasonal typhoon frequency at every 5° latitude-longitude resolution over the 

Western North Pacific (WNP) and the South China Sea.  Dr. Johnny Chan of Hong 

Kong and others (e.g., U.K.) have successfully performed seasonal forecasts of 

tropical cyclone (TC) activity over the WNP and posted their forecasts in an 

operational setting.  However, their forecasts are based on a set of single numbers 

representing the entire WNP.  Given the fact that the WNP is a huge basin and 

typhoons tend to have different tracks, it is desirable to have more detailed knowledge 

so that one can determine which region within the WNP has higher or lower TC 

predictability.   To the best of our knowledge, this is the first time that an attempt 

has been made to systematically forecast seasonal typhoon frequency at every grid 

points over the WNP and the South China Sea.   

For this study, the peak typhoon season (July to October) is used and the 

preseason (May and June) predictors encompass large-scale environmental parameters.  

The typhoon frequency (counts) is expressed by a Poisson distribution whose 
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intensity is governed by environmental parameters over the ocean basin including sea 

surface temperatures, precipitable water, low-level relative vorticity, sea-level 

pressure, and vertical wind shear.  Critical regions are determined on the basis of 

lagged correlations between each of these parameters and tropical cyclone counts at 

every 5° grid at the 95% confidence level.    

 

Two different experimental forecasts are conducted here.  The first one uses 

the observed TC counts at every grid as the predictand.  The second approach is 

more complicated.  We begin by categorizing historical TC tracks by an objective 

clustering method; in our case eight different track types are identified.  For each 5° 

grid, we count how many track types have passed through every year.  For some 

types, the number of passages is relatively high but for other types, there is no or at 

most one passage each year.  For the former, a Poisson regression model is used 

while for the latter a probit regression is employed.  For a fixed grid, forecasts are 

made first to each type using a Poisson regression or probit regression model and the 

summation of each individual forecasts is the overall forecasts.  A comparison is 

made to show which experimental forecasting methods produce better results.   In 

testing prediction skill, a leave-one-out cross-validation method is employed.  

Cross-validation is a technique of repeatedly omitting one or more observations from 

the data, reconstructing the model, and then making estimates for the omitted cases.  

We use correlation coefficients between observations and hindcasts as a measure of 

forecast skills (Chu et al., 2007).  Because probabilistic forecasts are applied, the 

Brier skill score is also used.    

 

 

2.  Methodology 
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a.  A Clustering method for TC tracks 

 

Our TC track clustering method is based on the mixture Gaussian model. A 

key feature of the mixture Gaussian model is its ability to model multimodal densities 

while adopting a small set of basic component densities. Finite mixture models have 

been widely used for clustering data in a variety of areas such as the large-scale 

atmospheric circulation (Camargo et al., 2007).  In this study, we assume that there 

are a few distinct path track types characterizing TC tracks in the WNP and the South 

China Sea.  For each TC track path, we model it as a second order polynomial 

function of the existing time of this TC. The basic assumption we impose here is that, 

for each specific track type, the set of coefficient of this polynomial function is jointly 

Gaussian distributed. Each TC track type has its unique distribution parameter. 

Therefore, the space spanned by the parameters of this track type model is a convex 

linear combination of a set of Gaussian distribution, or a mixture Gaussian 

distribution model. 

 In mathematical notations, let’s assume there are n  observed track records at 

6-h intervals for a given TC. For each record, there will be three features reported, the 

latitude, the longitude and the time. Let’s denote the path record of a TC by: 
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where latiz ,  and longiz ,  for ni ,..,1=  represent the i -th latitude and longitude 

record, respectively. And then we denote the relative observed time vector for the 

second order polynomial function by 
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where it  for ni ,..,1=  represents the time for the i -th records of this TC relative to 

the first record. We further assume that there are K  distinct TC track types in the 

WNP and the South China Sea, where K  is assumed to be a constant throughout this 

study. With the definition (1a) and (1b), provided that this TC is categorized as Type 

k , Kk ≤≤1 , the linkage between the passage and the relative time is governed by 

the following formula: 
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In (1c), the parameter set kβ  is distinct from other TC types. With model given in 

(1), for type k , intuitively we can see that, the zero-order coefficient dual provides 

the mean genesis location of this type; the first-order term features the characteristic 

direction of this path type; and the second-order type will determine the recursive 

shape of the typical path of this type; the covariance matrix (Σ) in (1c) determines the 

spread of a particular type. 

 Given a set of a total N TC records, { }Niii ,...,1|, =Tz , to get the maximum 

likelihood estimation of all model parameters and class type, we resort to the 

Expectation-Maximization (EM) algorithm. In detail, in the E-step, we calculate the 

membership probability of each type for each TC. In formula, it is: 
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where αk = f(k) is the prior probability of type k.  Apparently, the membership 

probability of a TC in (2) is virtually the posterior probability of each track type given 
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all model parameter sets. Let 
inkiki w 1w ,, = , where in  denote the record length of the 

i -th TC and 
in1  represents the in  vector of ones, we define a new diagonal matrix 

],...,,[ ,,2,1 kNkk www=kW  for each track type k . In the M-step, we then calculate the 

following estimation for the model parameter set of each type: 

 TZWTTWTβ kkk ')'(ˆ 1−=        (3a) 
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In (3), ]',...,,[' 21 NzzzZ = , ]',...,,[' 21 NTTTT = , where z , T  are defined in (1) and 

the subscript represents the index of a TC. 

 Given an initial setting of the model parameters and with multiple iterations of  

(2) and (3), the proposed EM algorithm will converge to a fixed set of parameter 

estimation. These convergence values are not necessarily the global best estimation 

and are determined by the initial starting values. Therefore, we apply multiple 

different initial values and choose the set of estimation with the maximum likelihood. 

 

b.  Poisson regression model 

 

The method of fitting a Poisson regression model is to use the Poisson formula 

to derive a maximum likelihood function.  For a given regression coefficient, 

Poisson intensity is calculated for each set of predictors, and the likelihood of the 

observed number of tropical cyclones is estimated using the Poisson distribution.  

The regression coefficients that maximize the product of probabilities over time are 

then used to forecast (or hindcast) typhoon counts. To solve the maximum likelihood 

equations, one resorts to an iterative procedure.   Here we use iteratively weighted 
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least squares.          

Poisson distribution is a proper probability model for describing independent 

(memory-less), rare event counts. Given the Poisson intensity parameter λ , the 

probability mass function (PMF) of h  counts occurring in a unit of observation time, 

say one season, is  

!
)exp()|(

h
hP

hλλλ −= , where ,...2,1,0=h  and 0>λ          (4) 

The Poisson mean is simply λ , so is its variance. In many applications, 

Poisson rate λ , is usually treated as a random variable.   

Through a regression model, the relationship between the target response 

variable, seasonal typhoon counts, and the selected predictors can be mathematically 

built. In this study, we adopt the Poisson linear regression model. Assume there are 

N observations that are conditional on K  predictors. We define a latent random 

N-vector Z , such that for each observation ih , Ni ,...,2,1= , iiZ λlog= , where iλ  

is the Poisson rate for the i -th observation. The link function between the latent 

variable and its associated predictors is expressed as iiiZ ε+= βX , where 

]',...,,,[ 210 Kββββ=β  is a random vector; noise iε  is assumed to be identical and 

independent distributed (IID) and normally distributed with zero mean and 2σ  

variance; ],...,,,1[ 21 iKiii XXX=X  denotes the predictor vector. In vector form, the 

general Poisson linear regression model is formulated as below: 
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 (5) 

Here, Normal  and Poisson  stand for the normal distribution and the Poisson 

distribution, respectively.  In model (5), 0β  is referred to as intercept.   

             It is worth noting that Poisson rate λ  is a real value while the TC 

counts h  is only an integer. Accordingly, λ  contains more information relative to h.  

Furthermore, because h  is conditional on λ , λ  is subject to less variations than 

h  is. Taken together, λ  should be preferred as the forecast quantity of the TC 

activity than h for decision making. 

 

c.  Probit Regression Model for a Binary Classification Problem 

The Poisson regression model detailed in the previous subsection has been 

approved very effective for most rare event count series. However, if the underlying 

rate is significantly below 1, this model may introduce significant bias. In this study, 

for a given typhoon type, if there is no historical record showing more than one 

observation in any given season, we shall instead adopt a binary classification model. 

That is, the response variable here is a binary class label, which is termed by “Y”. For 

each observation period, we define a class “Y = 1” if a typhoon is observed and “Y = 

0” otherwise.  

As below we formulate the probit regression model (Albert and Chib 1993, 

Zhao and Cheung 2007). Again, assume there are N observations conditional on K  

selected predictors. We define a latent random N-vector Z , such that for each 

observation iy , Ni ,...,2,1= , 1=iy  if 0≥iZ  and 0=iy otherwise. The link 

function between the latent variable Z  and its associated predictors is also linear, 

iiiZ ε+= βX , where ]',...,,,[ 210 Kββββ=β  is a random vector; noise iε  is 

assumed to be identical and independent distributed (IID) and normally distributed 
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with zero mean and 2σ  variance; ],...,,,1[ 21 iKiii XXX=X  denotes the predictor 

vector. In vector form, the probit regression model is described by: 

∏
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 (6) 

Classification model (6) is very similar to the Poisson regression model (5). Actually 

the probability of class “Y = 1” can be viewed as the rate of the typhoon counts. 

 

3.  Data 

 

The tropical cyclone data over the WNP and the South China Sea come from 

the U.S. Joint Typhoon Warning Center in Honolulu.  The data cover the period 1970 

to 2007. The data sets contain measurements of TC center location in latitude, 

longitude, one-minute sustained maximum wind speed, and central pressure at 6-h 

intervals for all TCs in the WNP.  Here TP refers to tropical storms and typhoons.  

Tropical storms are defined as the maximum sustained surface wind speeds between 

17.5 and 33 m s-1, and typhoons are defined as wind speeds at least 33 m s-1.     

 

4.  Predictor selection procedure  

 

In the Poisson regression and probit regression models we assume the 
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predictors are given a priori.  In a real application, however, choosing the 

appropriate environmental parameters that are physically related to the formation and 

typhoon tracks is crucial for the success of the final forecast scheme.  In Chu and 

Zhao (2007) and Chu et al. (2007), environmental parameters such as sea surface 

temperatures, sea level pressures, low-level relative vorticity, vertical wind shear 

(VWS), and precipitable water were chosen.     

Generally speaking, sea surface temperatures are important for TC formation 

and intensification. Warmer SSTs are expected to fuel the overlying atmosphere with 

additional warmth and moisture, thereby reducing atmospheric stability and 

increasing the likelihood of deep tropical convection.  A typhoon is characterized by 

a synoptic-scale low pressure (SLP) system with organized convection and strong 

cyclonic surface wind circulation (>33 m s-1) over the tropical WNP.  Usually lower 

SLP implies decreased subsidence, which would result in weaker trade wind inversion 

(Knaff, 1997). Because the trade wind inversion acts as a lid to atmospheric 

convection, weaker inversion would promote deeper convection. The occurrence of 

deep convection is important for typhoon formation because it provides a vertical 

coupling between the upper level outflow and lower tropospheric inflow circulations.  

Strong VWS disrupts the organized deep convection (the so-called ventilation effect) 

that inhibits intensification of typhoons.  Adequate moisture in the atmosphere 

provides a fundamental ingredient for deep convection.  Conversely, drier 

atmosphere tends to suppress deep convection and inhibits TC activity.  Most TCs in 

the WNP form in the monsoon trough marked by westerlies on its equatorward side 

and easterlies on its poleward side.  The monsoon trough can be approximately 

represented by the maximum in the relative vorticity at the 850 hPa level.  Local 

concentration of cyclonic vorticity in the trough enhances the spin-up process by 

strengthening boundary layer moisture convergence, increasing the likelihood of the 
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formation of TCs.  We also examined the lagged correlations between the circulation 

index (e.g., NAO, AO) and the TC counts for each of eight clusters.  However, none 

of those correlations are statistically significant at the 5% level.  For this reason 

circulation indices are not chosen as predictors. 

 In this study, we apply the same procedure suggested in Chu and Zhao (2007) 

and Chu et al. (2007) to determine the critical region for each candidate 

environmental parameter.  We calculate the Pearson correlation between the count 

series of each type of typhoon track and the preseason environmental parameters.  

For any tested grid point, if the Pearson correlation between the predictor and the 

target count series is statistically significant, this point is marked as critical.  Based 

on the linear regression theory, for a sample size of 38, the critical value for a 

correlation coefficient with two tails is 0.356 at the 95% confidence level (Bevington 

and Robinson, 2002).  Hence, a correlation coefficient with its absolute value greater 

than 0.356 at a grid point is deemed locally significant and this point is then selected 

as a critical region. To avoid the large dimensionality of the predictor matrix, which 

would easily lead to overfitting the model, a simple average over the critical regions is 

chosen to serve as a final predictor.  

  

5.  Results  

 

Figure one shows that there are eight major track patterns over the WNP, with 

three straight movers (Types A, B, and C), four recurved ones (Types D. E. F, and G), 

and one mixed pattern of both straight moving and recurved (Type H).  Types A and 

B clusters are similar in nature in that they both move more or less straight across 

Philippines to South China Sea and/or Hong Kong, Hainan, and Vietnam.  The major 

difference is that Type B storms tend to form farther eastward and southward than 
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Type A storms.  As a result, the mean track for Type B storms is longer than Type A 

storms.   Type C cyclones form in the South China Sea and are landlocked by 

Indochina peninsula and southern China’s coast, with very short path.  Just like 

Types A and B storms, Type D and E systems also form in the Philippine Sea but 

storms from the latter two types turn north- or northwestward and many of them made 

landfall on Taiwan, eastern China coast, Japan, and Korea.  Type F storms tend to 

form in low-latitude and away from Asia.  Type G storms also form far away from 

the Asian continent but at higher latitudes (~15°N).  They move northwestward and 

then northward to the east of Japan over the open ocean.   Storms associated with 

Type H are generally formed near the equator and to the east of 165°E.  They have a 

long trajectory over the water.   In terms of the frequency of occurrence, Type D has 

the highest occurrence (316 out of a total of 1261 cases).  This is followed by Type C 

and E.  Type H has the least number of occurrence (84) among eight types.        
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Fig. 1.  Eight TC track types identified by the mixture Gaussian model.  The 

number in each panel indicates the number of cases in each type.  Black circles 

denote the mean track for each type.   

Figure 2 shows the climatological mean distribution of seasonal TC passage 

frequency at 5° grid over the WNP and the South China Sea.   The maximum is 

found in an area to the east of Taiwan and the northern Philippines with a value of 3.5 

per season.  There are three distinct major paths: the first moves westward through 

the northern Philippines to the South China Sea; the second turns slightly 

northwestward through Taiwan toward the southern China coast; and the third heads 

northward towards Japan.  
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Fig. 2.  Geographical distribution of the peak season (July to October) tropical 

cyclone passage frequency on 5° x 5° grids.    

 

Figure 3 displays the Pearson’s correlation for predicting seasonal TC 

frequency using the Poisson or probit regression model, which is based on the 

categorized TC tracks.  The leave-one-out cross-validation method is used to assess 

the predictive skill.  Overall, the correlation coefficient reaches approximately 0.6 

over the WNP and the South China Sea with higher values near Japan and Korea 

(~0.70) and to the east of 150°E.  The predictive skill is slightly lower in a band 

stretching from south of Japan, through Taiwan, and the northern South China Sea.    

Similar to Fig. 3, Fig. 4 displays the Pearson’s correlation coefficient between 
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hindcasts and observations without categorizing TC tracks.  Results presented in Fig. 

4 are similar to those in Fig. 3, showing an overall skill of 0.6 in the core of the study 

domain and higher correlation in the area to the east of 150°E.     

Figures 3 and 4 exhibit similar but also somewhat different skills in 

forecasting seasonal TC at every 5° resolution from two approaches.  To appreciate 

the subtle difference, Fig. 5 shows the difference in forecast correlation skills between 

the track based and non track based results.   Positive values indicate that the non 

track based approach has higher skills and vice versa.  Two areas of negative 

difference are found; one covers Taiwan and the South China Sea and the other is in 

the middle of the WNP near 150°E.  Positive areas are found elsewhere, with a 

relatively large difference in the Yellow Sea, Korea, and Japan.  Judging from these 

results, the track based approach should be used as a method for predicting seasonal 

TC frequency in midlatitude East Asia while the non track based approach is 

preferable for lower latitudes near the East Asian marginal Sea.  At present, it is 

unknown what causes this difference. 
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Fig.  3.   Leave-one-out cross-validation correlation coefficient between hindcasts 

and observations of seasonal (July through October) tropical cyclone frequency at 5° 

grid when forecasts are based on track patterns.  The predictors are based on the 

pre-season conditions of May/June. 



19 
 

 
Fig.  4.   Same as Fig. 3 but forecasts are not based on track patterns.   
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Fig. 5.  Difference map in the correlation coefficients between track-based and non 

track-based forecasting methods. 

 

 Because the Poisson or probit regression model provides probability forecasts, it 

is also of interest to evaluate the model performance using the Brier Skill Score (BSS).  

The BSS can be viewed as the percentage improvement of model forecasts over 

climatology with zero indicating no skill relative to the climatological forecast and 

one for perfect score.  Figure 6 displays the BSS when the track patterns were 

categorized first.  For a large region including most of Japan, Taiwan, the northern 

Philippines, southeast China coast and Hainan, the BSS is approximately 0.3, 

indicating a 30% improvement over the climatology.  The skill is higher elsewhere.  

If typhoons are directly forecasted at every 5° grid without going through the 
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clustering procedure (Fig. 7), the pattern of the BSS is similar to that shown in Fig. 6, 

and the difference map between Figs. 6 and 7 reveals that the forecast skill is lower 

near Taiwan and the South China Sea when the track pattern approach is employed 

(Fig. 8).  Again, these results are qualitatively consistent with those shown in Fig. 5. 

 

Fig. 6.  The Brier Skill Score for the seasonal forecast of tropical cyclone frequency 

at 5° grid when forecasts are based on track patterns.   
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Fig. 7.  Same as Fig. 6 but forecasts are not based on track types.  
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Fig. 8.  Difference map in the Brier Sill Score between the track-based and non 

track-based forecasting system.   
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