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Abstract

In this study, a multivariate linear regression model is applied to predict the
annual tropical cyclone (TC) counts in the vicinity of Taiwan using large-scale climate
variables available in May. The model is based on the least absolute deviation so that
regression estimates are more resistant (i.e., not unduly influenced by outliers) than those
derived from the ordinary least square method. Through correlation analysis, four
variables (sea surface temperature, sea level pressure, precipitable water and low-level
relative vorticity) in key locations of the tropical western North Pacific and a CLIPER
(Climatology and Persistence) variable are identified as predictor data sets. Results from
cross-validation suggest that the statistical model is skillful in predicting TC activity,
with a correlation coefficient of 0.77 for the test period of 1970-2003 (34 years).
Relative importance of each predictor variable is evaluated. For example, for predicting
higher than normal typhoon activity, warmer sea surface temperatures, lower sea level

pressures, and a moist troposphere in May appear to be important.



1. Introduction

Taiwan has been ravaged by typhoons with enormous property damage and loss
of lives from time to time. Because of their catastrophic socio-economic consequences,
there is an interest in understanding climate controls that are instrumental for the year-to-
year typhoon variability and developing a basis for seasonal prediction of typhoon
activity. The predictive information, if properly made, could be important for decision
makers in relevant agencies to mitigate efforts of potential flooding, storm surges, and
high winds resulting from typhoons.

W. Gray pioneered the seasonal hurricane prediction enterprise using a
regression-based statistical model called the least absolute deviation method (e.g., Gray et
al., 1992). They showed that nearly half of the interannual variability of hurricane
activity in the North Atlantic could be predicted in advance. This is amazing because a
hurricane 1s a small system, and physical mechanisms governing its formation are
complicated. Also based on a regression model, Elsner and Schmertmann (1993)
attempted to predict intense annual Atlantic hurricane counts with some success. Along
the same line of statistical modeling, Chan et al. (1998) developed a model to predict
seasonal typhoon activity over the western North Pacific and the South China Sea.
When tested against a 30-yr sample through the jackknife method, skillful forecasts are
noted for a suite of predictands (e.g., the annual number of typhoons and the annual
number of tropical storms and typhoons). The informative results of Chan et al. (1998)
are pertinent to the vast western North Pacific basin and the South China Sea. For a
smaller geographic domain such as in the vieinity of Taiwan, the frequency of typhoon

occurrences may be very different from that of the basin-wide numbers. For example,



tropical cyclone counts over the entire western North Pacific during the developing year
of the EINiE do not differ much from the long-term climatology, yet the genesis
location during the peak and late season of the E1 Niff developing year is dramatically
shifted east- and southward so fewer storms are found to the west of 150% (Wang and
Chan, 2002; Chu, 2004). Therefore, it has yet to be demonstrated that new predictive
models would work for a smaller area.

In this study, we attempt to predict the annual number of tropical cyclones (TCs)
in the vicinity of Taiwan area on the basis of the Least Absolute Deviation (LAD)
regression method. This method has been tested for many years by Gray and his
associates and is quite mature. Section 2 discusses the dataset, and section 3 outlines the
LAD model. In section 4, procedures for selecting appropriate predictor variables are

described. Section 5 discusses the forecast results. A summary 1s found in section 6.

2. Data and data processing

The tropical cyclone (tropical storms and typhoons) series in the vicinity of
Taiwan from 1970 to 2003 compiled by the Central Weather Bureau is used. This series
covers an area between 214t -264#%t and 1195 -125% .

Monthly mean sea level pressure, wind data at 850- and 200-hPa levels, relative
vorticity data at the 850 hPa level, and total precipitable water over the western North
Pacific (0[=304% ) are derived from the NCEP/NCAR reanalysis dataset (Kalnay et al.,
1997; Kistler et al., 2001). The horizontal resolution of the reanalysis dataset is 2.5?
latitude-longitude. Tropospheric vertical wind shear 1s computed as the square root of the

sum of the square of the difference in zonal wind component between 850- and 200-hPa



levels and the square of the difference in meridional wind component between 850- and
200-hPa levels (Clark and Chu, 2002). The monthly mean sea surface temperatures, at 2?
horizontal resolution, are taken from the NOAA Climate Diagnostic Center in Boulder,
Colorado. As our interest is to develop a prototype model, large-scale environmental

parameters only for the month of May are derived.

3. Least Absolute Deviations regression

A linear regression model can be generally written as
K

y(H)= D cx (0 +N@ (1)
j=1

where y(f) is the desired predictive variable or predictand, x,(¢),i =1....,K represent the
predictors and ¢,,i =1...., K are the corresponding regression parameters, while N(¢) isa

random variable and represents the regression deviations (residuals). The least square
error (LSE) is probably the best known method for fitting linear regression models and by
far the most widely used. However, the LSE is not necessarily the optimum fitting

method if the deviation N () is not of the Gaussian distribution. Moreover, the residuals

in the LAD are computed from the median, whereas in the LSE they are derived from the
mean. Because the median is a robust estimator of the location than the mean, LAD
regression estimates are less sensitive to large outliers (e.g., extreme values) than the LSE
method. In particular, if the deviation is double exponentially distributed, the optimum

method for linear regression will be LAD.



The basic idea of LAD regression problem is generally stated as below. Givena

sample size of n points {x;,y,;}.X; € R*,i=1,..,n, the LAD fitting problem is to find a

minimizer, ¢€ R, of the distance function (absolute deviation):

hn

=2

i=1

v, —(e.x,)
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K
Vi = 2.6%
Jj=1

where X:[yl,yz,...,yn]', x:[ﬁ,&,...,xn]'. e= [Bys sy ]

such that, f(¢)=min(f(c)).

This problem is solvable because f(c) is continuous and convex. Due to the

nonlinearity of absolute operation, solving LAD problem is no longer a linear problem.
In the past, an abundance of algorithms was developed based on the well-studied linear

programming (LP) problem, since LAD and LP are similar in their very basic nature.

The LP problem in standard form is to find x which maximizes f(x)= (g, Z> subject to

constraint 4x <b and x =0 with given vector ¢, b and matrix 4. With some

straightforward but tedious derivations, it can be shown that any LAD curve-fitting can
be expressed as an equivalent bounded feasible LP problem. We choose the Bloomfield-
Steiger algorithm to find the minimizer (1980). The basic idea of this algorithm is to find
the normalized steepest direction in each iteration of the algorithm. Suppose the current

fitis ¢, and 0,,0,,...,0, is a set of directions along which the next iteration could move,

the optimum descent direction being &, along which



min(f(c+15,),t € R):min[min(f(g+t§)),i <K] 3)

the inner minimization over 7 in R. To find this direction, the K -weighted median
calculations would need to be done (one for each i in the right hand side of the equation

(3)). A pseudo code for the Bloomfield-Steiger (BS) algorithm is listed in Appendix A.

4. Procedures for selecting predictor variables

Tropical cyclone activity, on the seasonal time scale, is modulated by the large-
scale environmental conditions (e.g., Gray, 1977; Watterson et al., 1995). In the
following, correlation analysis between the TC occurrences and the environmental
parameters (e.g., SST, relative vorticity) over the tropical western North Pacific is used to
identify their physical relationships. If correlations over a particular area of the western
Pacific are found to be statistically significant at the 95% confidence level, the parameter
over this area is retained as a potential predictor variable. For a sample size of 34, this
critical value is 0.34 when a two-tailed t-test is applied.
4.1 Sea surface temperatures (SSTs)

SSTs are known to be important for TC formation and intensification. Warmer
SSTs are expected to fuel the overlying atmosphere with additional warmth and moisture,
thereby reducing atmospheric stability and increasing the likelihood of deep tropical
convection. Deep convection such as organized thunderstorm clouds acts as the primary
mechanism for the vertical coupling of the lower and upper tropospheric flow patterns for
TC formation. The contour plot for the correlation between TC counts and SST is shown
in Fig. la, in which a maximum value of 0.58 is found in the core of the warm pool (2?
1463 ). For simplicity, we choose just one area where the SST is most highly (in

absolute value) correlated with the number of TCs.



4.2 Sea level pressures (SLPs)

The contour plot for the correlation between the TC frequency in the vicinity of
Taiwan and the May SLP is shown in Fig. 1b. The highest negative correlation (-0.48) is
found at 15 , 130 , very close to Taiwan. This result is physically reasonable as lower
SLPs to the southeast of Taiwan in May correspond to higher TC frequency near Taiwan,
and vice versa. Dynamically, the juxtaposition of the maximum correlations found in
Figs. 1a and 1b suggests a Rossby-wave type response of atmosphere to equatorial
heating as demonstrated in Gill model.
4.3 Precipitable water (PW)

The entrainment of drier air in the midtropospheric results in less buoyancy
for the tropical convection systems as well as diminish the upper-level warming due to
decreased release of latent heat (Knaff, 1997). Consequently, drier atmosphere tends to
suppress deep convection and inhibits TC activity. Positive and strong correlations
between PW and TC frequency are found in the core of the tropical western North Pacific
(Fig. 2a). Thus, more moisture in the atmosphere in the tropical western North Pacific in
May 1s conducive to more TC activity near Taiwan and vice versa. Of particular note is a
smaller area of statistically significant correlation (0.61) near 10#% , 137.5% , and this
maximum center lies between the maximum correlations found in Figs. 1a and 1b.
4.4 Low-level relative vorticity (VOR)
The monsoon trough in the western North Pacific is characterized by the strong

relative cyclonic vorticity in the lower troposphere and is known to be the birthplace of
typhoons. Figure 2b displays a positive and high correlation in the Philippine Sea

(17.5%% , 132.5% ) with a value of 0.47 which is statistically significant. This result is



internally consistent with those in Figs. 1b and 2a, in that lower SLPs in the Philippine
Sea induce stronger cyclonic vorticity near the surface and higher moisture in the
atmosphere, leading to more TC frequency in the vicinity of Taiwan. Also note that the
maximum correlations in Figs. 1 and 2 are statistically significant at the 95% confidence
level based on a t-test when climatological persistence is taken into account (Clark and
Chu, 2002).

4.5 Vertical wind shear (VWS)

Strong VWS disrupts the organized deep convection (the so-called ventilation effect)
which inhibits intensification of the TCs. Negative but weak correlations exist in the low
latitudes with a center near 5ff , 155 (Fig. 3a). This correlation (-0.31) is, however,
statistically insignificant. A positive and strong correlation is noted near 57t , 1205 but
that location is too close to the western boundary of the domain and there is a lack of
physical explanation for the VWS and TC frequency. As a result, VWS is not used in the
subsequent forecasting simulation.

4.6 CLIPER

The variance analysis method is a statistical technique to test the existence of
hidden periods in a time series. The basic idea of this method is found in Appendix B.
Suppose the hidden periods for the series are given, we can use CLIPER method to find
the periodical oscillation. The basic idea for CLIPER prediction is very simple: for the
first significant period, say p , we can re-group the data as defined in formula (B1). Then
we can calculate each group mean, which will be the basis for prediction for this group.
Figure 3b displays the variance analysis method. The significant period at the 95%

confidence level is 16 years.



5. Prediction results

With the various predictor variables selected through correlation analysis, we then
use a cross-validation method to establish the overall forecasting ability of LAD model.
The approach is as follows (Yu et al., 1997). The predictor and predictand data set of T
time points are divided into L segments. A model 1s then developed using the data of L-1
segments. This model is then used to predict TC frequency in the remaining segment.
This process is repeated by changing the segment that has been excluded from the model
development. In this study, we remove only one observation at a time for each case. By
doing this, we obtain N predictions. These predicted values are then correlated with N
observations and the overall forecast skill can be determined. The cross-validation
results are shown in Fig. 4 and a reasonably skillful forecast is seen. In some years,
forecast values are smaller than actual observations (e.g., 1982) but in other years they
are larger than observations (e.g., 1998). Thus, there is no systematic bias revealed in
the prediction scheme. The linear correlation between the cross-validation results and the
raw TC data is 0.77.

It is also interesting to compare the correlation skill from the regression based
forecast scheme with that obtained from a random forecast. A random sample is
generated from the 34 observed TC values ranging from one to seven using a random
number generator, and a correlation coefficient between the randomly generated time
series and the observed data is computed. This procedure is repeated 10,000 times and a
histogram of the correlation coefficient can be constructed. Results from the Monte

Carlo simulation reveal the correlation coefficient at the 95% (99%) confidence level 1s
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0.33 (0.42). Accordingly, the correlation coefficient (0.77) from the LAD model in this

study 1s deemed to be skillful relative to the benchmark random samples.

6. Relative contribution of predictor variables

This section examines the relative importance of the predictor variables, which is
reflected in the contingency relationships between the predictand and the predictors. The
predictors and predictands are each classified into three categories using data from 1970-
2003. The predictor categories are based on the 30:40:30 proportion of the probability
distribution. However, a similar proportion cannot be followed for the predictand
because of the limited data length and the repeated nature of typhoon counts. In this
study, we set the elow? and bove? thresholds from the ormal? category as two and
five, respectively. That is, a year 1s classified as  elow? when the annual typhoon count
equals or less than two. Conversely, a year is chosen as  bove? when the count equals
or greater than five. As a result, eight years are chosen as  elow? than normal years.
They are 1972, 1973, 1983, 1988, 1989, 1993, 1997, and 1999. For the bove? normal
years, they are 1978, 1982, 1985, 1986, 1987, 1990, 1994, 1998, 2000, 2001, and 2003.

Table 1a illustrates that during the elow? typhoon years, SLP tends to be

normal or above normal, while PW and vorticity (VOR) tend to be normal or below
normal. During the bove? typhoon years (Table 1b), SST shows a tendency to be
normal or above normal. There is a preference for VOR to be in the normal or above
normal category, and the PW varies in a similar manner as VOR. Also note that in Table
1a, there are five years (1973, 1983, 1989, 1993 and 1997) in which the signs for both

VOR and PW are all negative when the typhoon count is below normal. When typhoon
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count is above normal (Table 1b), there are seven years (1978, 1985, 1990, 1994, 2000,
2001, and 2003) in which a positive signal appears in PW, and a negative signal appears
in SLP. Based on the composite of the above and below normal typhoon years, one can
further clarify the category relationship between the predictors and the predictand by
computing the category percentage for each predictor. In Figure 5a, during the elow[]
typhoon years the percentages of below normal PW and VOR are very high, reaching
75%, while a lack of above normal PW and VOR is conspicuous. Interestingly, during
the bove? typhoon years (Fig. 5b), the percentage of below normal SLP is rather high
(73%). Because the frequency of below PW is very low when typhoon count is low, a
strong linear relationship between PW and typhoon numbers is noted. For other
variables, nonlinear relationships are more evident. For example, SLP appears to be a
good predictor during active typhoon years but less so for low typhoon years. The low

level relative vorticity is important only during the elow? typhoon years.

7. Summary

Climate prediction of tropical cyclone activity has traditionally been carried out for
the North Atlantic and the western North Pacific by various research teams. Because of
the vast expanse of ocean basins and pronounced interannual climate variations in the
tropics, there is no guarantee that such basin-wide prediction is also applicable to smaller
regions within a basin. In this study, a multivariate least-absolute-deviation regression
method is adopted to predict the annual tropical cyclone frequency in the vicinity of
Taiwan using large-scale climate information available in May. Through correlation

analysis between TC frequency and each individual climate variables (e.g., SST, SLP)
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over the tropical western North Pacific, we identified key locations to be used as the
predictor data sets. We then used the leave-one-out cross-validation technique to test the
predictability of TC frequency. The cross-validation provides a nearly unbiased estimate
of true forecast skill.

The linear correlation between the cross-validation predictions and the
corresponding actual observations for the test period 1970 -2003 is 0.77, which is
significant at the 95% confidence level. This result implies that it would be possible to
predict the annual TC counts for a small area with reasonable skill using a physically
based regression model. To evaluate the relative contribution of each predictor, the
predictors and predictand are each classified into three categories. Warmer SST, lower
SLP, and higher precipitable water are the precursors to higher than normal typhoon
activity. On the other hand, lower precipitable water and lower low-level relative
vorticity are characteristics of lower than normal typhoon activity. In the future, it would
be of interest to determine the predictability of TC frequency when climate variables
chosen are for months earlier than May. Apart from pure scientific inquiry, if good skills
can be obtained, say, when the April predictors are chosen, it would allow decision

makers more lead time to respond.
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Then, one calculates the within-group variance and among-group variance given by

S ithin = Z(yjk _J—;_f)z AN - p) (B2)

Samongzznj(fj_f)z/(p_l) (B3)
=

where n; represents the number of elements in j -th sub-group

Note that these variances should be normalized by their respective degrees of freedom.

Last, we caleulate the ratio S,,,,,, /S, and compare it to the critical value determined

by given confidence & (for example 95%), that is I'(¢, p—1, N — p) where F

represents F-distribution. If this ratio is bigger than the cntical value, it will suggest that

the original series has a significant period of p .
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Table 1 Predictor anomaly categories during the (a) below and (b) above typhoon (TY)
years. Symbol — represents the below normal category, + above normal category,
and O normal category.

(a) Below typhoon years
YearYA] 1y SST_| SlP | PW | VOR
1972 - = 0 - 0
1973 - 0 + - -
1983 - - 1§ = -
1988 - 0 0 0 0
1989 - 0 (1)6 a i
1993 . - P = =
1997 = 0 + - -




(b) Above typhoon years

Var
Year

—
=

SST

SLP

PW

!
=
=

1978
1982
1985
1986
1987
1990
1994
1998
2000
2001

2003

+ + + |+ + [+ +

+ + +e + |+ e+ |0
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Figures

Fig. 1. (a) Correlation map between tropical cyclone count series in the vicinity of
Taiwan and the sea surface temperatures over the tropical western North Pacific in May.
(b) Same as (a) except for the sea level pressures in May.

Fig. 2. (a) Same as Fig. 2(a), except for the precipitable water in May. (b) Same as Fig.
2(a), except for the relative vorticity at 850 hPa in May.

Fig. 3. (a) Same as Fig. 2(a), except for the vertical wind shear in May. (b) Variance
analysis of cyclone count series. The x-axis is the years and y-axis is the F-score.

Fig. 4. Time series of observed (broken line) and cross-validated forecasts (solid line) of
tropical cyclone counts.

Fig. 5. The category percentage of each predictor during years of (a) below and (b) above
typhoon counts.
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