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Abstract

Using a non-linear artificial neural network (ANN) with a mutlilayer perceptron (MLP) topology, daily 
extreme precipitation events are statistically downscaled from the ECHAM 5 GCM scenario A2 during the period of 
2011-2040.  A two-test approach, recommended by the Fourth Assessment Report of the International Panel on 
Climate Change , is used to determine the most appropriate GCM for downscaling purposes.  BCa bootstrap 
resampling is applied to provide 95% confidence intervals for storm frequency and intensity for all datasets. 

The model output suggests an increase in the frequency of heavy rainfall events, but a decrease in the 
intensity during the next thirty years (2011-2040). 

 
 

1. Introduction 

There is considerable interest in the future 
climate change for Oahu, Hawai’i because it is the 
most populous island in the state and future water 
resource planning and management would have the 
largest impact in this region.  It is located in the 
Central North Pacific and is greatly influenced by 
maritime air.  Due to external forcings and complex 
topography from two mountain ranges, precipitation 
can be highly variable creating regions that range 
from desert climate to rain forest within only a few 
miles.  Also, the island is vulnerable to periods of 
heavy precipitation resulting from mid-latitude fronts, 
Kona storms, upper level disturbances, and tropical 
cyclones [Kodama and Barnes, 1997]. 

It is generally agreed upon within the 
scientific community that the amount of CO2 in the 
atmosphere has increased dramatically in the past 
century as a result of anthropogenic activities [IPCC, 
2007].  A global increase in temperature has also 
been documented in association with CO2.  However, 
the effect increasing CO2 has on other variables such 
as precipitation is not as easily understood. 

In an attempt to better understanding wholly 
the effect of increasing CO2 on our planet, numerical 
models known as General Circulation Models 
(GCMs) were designed and implemented.  However, 
due largely to computational limitations, GCMs have 
been restricted to very coarse spatial resolution (~250 
km).  This restricts impact studies, which use the raw 

data output, to focus on large areas.  Island nations 
and smaller regions require a finer resolution output 
that is currently only available through methods 
which downscale the coarse GCM output.   

Statistical downscaling attempts to find an 
empirical relationship between large-scale 
atmospheric variables (predictors) and a small-scale 
variable (predictand).  The optimal relationship is 
found through training and validation of the model.  
Various statistical downscaling methods are available, 
but the most common has been linear and non-linear 
transfer functions. 

The current study (Norton et al., 2011) 
applies a non-linear method known as an artificial 
neural network (ANN) for downscaling daily 
precipitation extremes for Oahu, Hawai’i during the 
time periods 1979-2008 (current climate) and 2011-
2040 (future climate).  It has been shown that ANNs 
can be an adequate method when dealing with 
nonlinear relationships found in meteorology [Hsieh 
and Tang, 1998].     
In order to assess the confidence interval of both 
empirical and modeled extreme events statistics, a 
BCa percentile bootstrap resampling method is 
employed [Efron and Tibshirani, 1993].   

In section 2 and 3, the data and methodologies 
are discussed; results are covered in section 4; follow 
by a summary in section 5.  
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2. Data 
 
A. Observational Data 
 

The observational data are acquired from the 
National Climatic Data Center (NCDC) website 
based in Asheville, North Caroline.  After filtering 
the data based on missing values, only 16 stations 
were useable for downscaling purposes.  To ensure 
adequate comparison between different variables and 
locations, all data were standardized according to the 
mean and standard deviation.  Since the 
untransformed variable does not following a 
Gaussian distribution, neither will the transformed 
data. 

 
B. NCEP Reanalysis II Data 
 

Potential predictors variables used for the 
training of the statistical model are obtained from the 
National Centers for Environmental Prediction 
(NCEP) Reanalysis II model runs for the time period 
1979-2008.  The model runs at a resolution of 2.5° 
latitude x 2.5° longitude on a global grid and nine 
variables at 17 different pressure levels are acquired.  
Due to a lack of large-scale observational data sets at 
various pressure levels (i.e., zonal and meridional 
winds), we must assume NCEP Reanalysis II data to 
be a gridded observation data set in order to allow for 
a statistical relationship to be built between large-
scale NCEP and local-scale NCDC data. 

 
C. GCM data 
 
 Hindcast (1979-2008) and future (2011-
2040) daily precipitation data from 24 different 
GCMs and their various emission scenarios were 
obtained and analyzed from within the Environment 
Canada website.  Complete GCM datasets were 
obtained through the World Data Center for Climate 
CERA Gateway.  
  

3. Methods 
 
A. Predictor Selection 
  
 Two different selection methods based on 
the correlation between the potential predictors and 
predictand have been employed and compared due to 
the fact the results from statistical downscaling are 
extremely sensitive to the choice of predictors.  The 
first method is the Pearson correlation, which is the 
ratio of the covariance between potential predictors 
and predictand to the product of their standard 

deviations.  The second and more robust is the 
Spearman rank correlation, which uses the rank of the 
raw data.  The two correlation analyses were 
compared and the potential predictors which had the 
greatest correlation with the predictand (precipitation) 
from both methods are selected as inputs into the 
neural network.             
 
B. MLP Topology and Learning Rule 
Selection 
 
 Artificial neural networks are extremely 
configurable with the commonly used configurations 
called topologies.  In the current study, we applied 
the multilayer perceptron (MLP) topology based on 
its wide usage in current literature and relative ease to 
set up [Hsieh, 2009].    
 MLPs are trained by use of error-correction 
learning in which the network works to minimize the 
error between model output and desired output 
through repeated model runs and adjustment of 
model weights.  The method by which the weights 
are adjusted is known as the learning rule and is a 
primary component of many ANN topologies.   
 Six different learning rules were tested by 
training the MLP network and keeping all 
components the same.  The model output of extreme 
precipitation events was then compared to the 
observational extreme events by use of a 2x2 
contingency table and various metrics calculated 
from the table.  The learning rule which performed 
the best among the metrics was selected.   
 

C. Division of Data for Model Use 

The predictors and predictand data for each 
model run must be divided into three different groups.  
The training data consisted of 80% of the data.  It is 
used in building the model and discovering the 
relationship between the predictors and predictand.  
To eliminate the model “memorizing” the training 
data, known as overfitting, 10% of the data is used as 
a cross-validation set.  Overfitting results in the 
model not performing well with independent data 
outside the training phase.  Lastly, 10% of the data 
must be kept separate from the training and cross-
validation phase for use as an independent testing 
data set into the model after it has been built.  In 
order to properly verify the testing phase, cross-
testing was implemented which retrains the model ten 
times using a separate 10% of the data each time for 
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each station [Hsieh, 2009].  This allows for the entire 
data set to be tested.   

D. GCM Selection  
 
Currently, there are ~24 different GCMs available for 
downscaling purposes.  Each is made in a different 
region of the world and often is designed with that 
region’s interests in mind.  This has resulted in 
models that perform drastically different from one 
location to another.  It is therefore important to 
determine which GCM of the 24 is appropriate for 
our downscaling variable and region.   
 A two-test approach suggested by the IPCC 
was applied to the suite of models in an attempt to 
determine the best model for precipitation on Oahu 
[IPCC, 2007].  The first is a baseline test which finds 
the absolute difference between the average daily 
observational precipitation during 1979-2008 and 
GCM precipitation hindcasts of the same time period.  
The GCMs are then ranked according to the resultant 
difference.  The second test is considered a future 
projection (2011-2040) test which finds the absolute 
difference between the mean of all 24 models and 
each GCM.  The GCMs are then ranked according to 
this resultant difference.   The two ranked lists are 
compared to find an overall high ranked model and 
scenario.   
 
4. Results 
 
A. Predictors Selection 
 
 Overall, both the Pearson correlation and 
Spearman rank correlation analysis suggested four 
predictors out of all possible candidates.  The 
predictors found best for use in downscaling extreme 
precipitation are: relative humidity at 850 hpa, the 
zonal wind component at 850 hpa, the meridional 
wind component at 1000 hpa, and sea-level pressure.   
 In many of the dry regions on Oahu, large 
synoptic events such as Kona storms have the largest 
influence on precipitation extremes.  During such 
events, typical northeast trade winds change to moist 
southerly flow.  The change in low level winds and 
moisture is reflected by the variables selected through 
the correlation analysis.  [Timm and Diaz, 2009] 
showed near surface meridional wind to have the 
largest influence on island precipitation.   
 In regions where local-scale processes (i.e., 
orographic uplifting) dominate the rainfall patterns, 
correlation analysis did not suggest any adequate 
predictors for downscaling purposes.  This is to be 
expected since it is the nature of statistical 
downscaling to find the relationship between local 

precipitation and large-scale processes.  As a result, 
the 16 available stations were reduced to only seven.  
Of the seven, five are leeward dry stations and two 
are windward wet stations.     
 

(a) Levenberg Marquardt learning rule 
 Obs (Yes) Obs (No) 

Forecast (Yes) 23 6 

Forecast (No) 9 8722 

(b) MLP extreme event performance 
 Obs (Yes) Obs (No) 

Forecast (Yes) 19 18 

Forecast (No) 22 10891 

 
Table 1:  1(a): The 2x2 contingency table for precipitation > 90th 

percentile during training of time period 1979-2008 for the 
Campbell Station.  The Levenberg Marquardt learning rule is 

implemented in MLP. 1(b): The 2x2 contingency table for 
precipitation extremes of the MLP cross-testing data set during 

1979-2008 at the Campbell Station. 
 
B. Choice of Learning Rule and Performance 
Measures    
 
 Comparison of learning rules suggested, 
Levenberg-Marquardt, to be the only learning rule 
out of the six to have any skill at modeling extreme 
events.  This is best represented in Table 1(a), which 
shows a 2x2 contingency table for the Levenberg-
Marquardt learning rule during the training phase at 
the leeward Campbell station.   
 Several metrics are easily calculated from 
the contingency table in order to evaluate the model’s 
forecast skill.  Hit rate (HR) is used as an accuracy 
measure because it measure the proportion of 
observed events correctly forecasted. The worst 
possible value for HR is zero and the best is one.  
Frequency bias (FB) is used to evaluate the model’s 
forecasting bias with an unbiased forecast of 1 and a 
value greater/less than one indicating the event was 
forecasted more/less often than observed.  A 
commonly used skill score to evaluate forecast 
performance is known as the Peirce skill score (PSS) 
[WMO, 2002].  It was chosen because contributions 
made to the score by a correct no or yes forecast 
increases as the event is more or less likely, 
respectively.  A perfect forecast would result in a 
PSS=1 while a random forecast results in  
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PSS=0.    Another skill score used when the event 
occurs substantially less frequently than the 
nonoccurrence is the Gilbert Skill Score (GSS) with a 
perfect score of 1 and the worst score of 0.  Finally, 
the Extreme Dependency Score has been calculated 
to assess the skill of the model at forecasting rare 
events.  For a perfect forecast, EDS = 1 and for 
random forecasts EDS = 0.  The 1(a) contingency 
table metrics have been summarized in the second 
column of Table 2.   
 

 
Table 2: The scalar attributes of Hit Rate (HR), Gilbert Skill Score 

(GSS), Pierce Skill Score (PSS), Frequency Bias (FB), and 
Extreme Dependency Score (EDS) for contingency table 1a and 1b. 
 

It is clear from the second column of Table 
2 that the Levenberg-Marquardt learning rule 
outperforms the benchmark random forecasts.   
 
C. MLP ANN Performance 
 
 Having selected the appropriate predictors, 
topology and learning rule for our study, it is possible 
to train and test the ANN performance.  Table 1(b) 
demonstrates the model’s skill through use of cross-
testing at the Campbell Station.  The metrics for 
Table 1(b) are given in the third column of Table 2.  
While it is clear that model skill decreases during the 
cross-testing as the sample size increases, the metrics 
still indicate an ability to outperform a random 
forecast.  Model performance is further evaluated for 
the training and cross-testing phases through use of 
the Pearson correlation coefficient and RMSE skill 
score relative to a persistence model.  These statistics 
are summarized in Table 3.   
 During the training stage four of five 
leeward stations exhibit significant correlation values 
at the 5% level between observations and model 
outputs.  During the independent ‘test’ phase, three 
stations are statistically significant. The RMSE skill 
score in the last column of Table 3 suggests that the 
ANN is skillful at producing extreme precipitation 
events in leeward regions during the current climate.  
 
 
 

Station MLP MLP RMSE 

Training Test SS 
Campbell 0.64* 0.29* 0.31 
Honolulu 0.51* 0.21 0.28 
Honolulu 

International 
Airport 

0.72* 0.34* 0.34 

Paiko 0.48* 0.27* 0.22 
Punchbowl 0.29 0.17 0.08 
Pali Golf 0.09 0.04 -0.71 

Waimanalo 
Farm 

0.05 0.03 -1.56 

 
Table 3: MLP model performance for daily precipitation extremes 
in terms of correlation (second and third columns) and RMSE skill 
score (the last column) during 1979-2008.  The top five stations are 

located in the dry region and the bottom two stations are located 
near the wet region of Oahu. * denotes the statistical significance 

of correlations at the 5% level. 
D. GCM Selection and Simulation 
 
 The two-test approach outlined in Section 
3D suggests the GCM ECHAM 5 scenario A2 as the 
most appropriate for downscaling daily precipitation 
for Oahu.  Assuming the current day relationships 
between predictors and predictand hold valid into the 
future under climate change, the GCM predictor 
variables can be used as input into the MLP ANN 
after each run of the cross-testing procedure for each 
station.  This creates a ten model ensemble at each 
station from which the final resultant statistics are 
calculated as the ensemble average.  To assess the 
confidence interval of the given statistics, the BCa 
percentile resampling technique is employed [e.g., 
Efron and Tibshirani, 1993; Chu et al., 2009].  
 As an example, the Honolulu International 
Airport can illustrate the changes in precipitation 
extremes on leeward Oahu.  During the current 
climate period (1979-2008), 47 heavy rainfall events 
are observed at this station while the model output 
shows 44 extreme events (Table 4).  This model bias 
is found to occur at all leeward stations.  During the 
future 30 years (2011-2040), the ANN predicts 55 
extreme events.  It is possible given the model bias, 
that the 55 events are slightly lower than reality. It is 
important to note that the 95% confidence intervals 
for the future climate shift to higher values relative to 
the current climate in both observations and model 
simulations.  However, the spread of the intervals for 
the future climate are conservative relative to the 
current climate.  
 
 
 
 
 

Attribute 
Learning 

Rule Training 
Performance 

MLP Cross-
Test 

Performance 
HR 0.72 0.46 
FB 0.91 0.90 
PSS 0.72 0.46 
GSS 0.60 0.32 
EDS 0.88 0.75 
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 Campbell Honolulu International 
Airport 

Honolulu 
(Observatory) 

Paiko Punchbowl 

Extreme Frequency 
(1979-2008) 

41 47 51 62 58 

Confidence Interval 
(1979-2008) 

[29,54] [36,63] [38,67] [48,79] [45,74] 

Model Extreme Frequency 
(1979-2008) 

37 44 46 55 50 

Confidence Interval Model 
(1979-2008) 

[24,51] [32,59] [33,62] [43,72] [38,65] 

Model Extreme Frequency 
(2011-2040) 

46 55 54 67 64 

Confidence Interval Model 
(2011-2040) 

[37,63] [43,72] [41,71] [50,87] [48,83] 

 
Table 4: Extreme rainfall frequency for observed (1979-2008), current climate (1979-2008) from model, and future climate 
(2011-2040) from model.  The corresponding 95% confidence interval of the storm frequency based on the BCa bootstrap 

resampling method is given in parenthesis. 
  
 

Again, using Honolulu International Airport 
as an example and looking at rainfall intensity, the 
average value of 79 mm/day is observed.  The model 
simulations indicate a dry bias towards lower values 
at a prediction of 73 mm/day.  During the next 30 
years, the average intensity of an extreme event is 
predicted to be 64 mm/day.  This is lower than the 

average intensity of the actual observations and 
model simulation during the current climate.  
Combining results from both tables, our study 
suggest that in the next 30 years, the frequency of 
extreme events will increase but their mean intensity 
will decrease on leeward Oahu.   

  

 

Table 5:  Same as Table 4 but for mean extreme rainfall intensity. 

 Campbell Honolulu International 
Airport 

Honolulu 
(Observatory) 

Paiko Punchbowl 

Average Extreme Intensity 
(mm/day) 

(1979-2008) 

90.4 78.5 74.4 81.4 88.8 

Confidence Interval 
(1979-2008) 

[80.8,105.7] [72.4,88.7] [67.6,84.7] [75.3,89.3] [82.5,99.0] 

Average Extreme Model 
Intensity (mm/day) 

(1979-2008) 

84.2 73.4 65.9 74.7 79.6 

Confidence Interval Model 
(1979-2008) 

[74.3,97.8] [66.1,85.07] [58.0,77.6] [68.9,83.2] [71.4,90.9] 

Average Extreme Model 
Intensity (mm/day) 

(2011-2040) 

74.8 64.4 59.9 68.1 72.5 

Confidence Interval Model 
(2011-2040) 

[65.2,88] [57.3,75.1] [51.3,71.5] [61.6,77.4] [64.2,83.3] 
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5. Conclusion 
 

Heavy rainfall and flash floods are common 
in the Hawaiian Islands due to their steep terrain, 
orographic mechanisms, rain-producing weather 
systems, and abundant moisture supply. Given the 
socio-economic repercussions resulting from past 
storm events, it is of considerable interest to 
investigate changes in the frequency and intensity of 
heavy rainfall events in Hawaii, particularly for Oahu 
as it is the most populous island in Hawaii.          
 This study is based on observational station 
data on Oahu, NCEP/DOE reanalysis II data, and 
GCM data to project future changes in precipitation 
extremes via a artificial neural network using the 
MLP topology.  Due to the limited availability of 
long-term and complete precipitation records, as well 
as local-scale processes which affect precipitation, 
stations selected in this study are restricted to only 
seven on Oahu.   Using a large number of GCMs and 
their emission scenarios, the two-test approach 
recommended by IPCC reveals that the ECHAM5 A2 
is the most appropriate in downscaling extreme 
precipitation events for Oahu.  It is found that MLP 
networks performed better in drier areas.  The MLP 
trained models are used together with ECHAM5 A2 
data to provide estimates of the model’s present-day 
climate and future climate.   

There is a general agreement in key test 
statistics (e.g., the frequency of extreme events) 
between actual observations and GCM outputs under 
present-day conditions at all five leeward stations, 
although the model exhibits a small bias in 
underestimating both the frequency of storm 
occurrences and their mean intensity.  For future 
projection (2011-2040), the model calls for higher 
number of extreme events but lower mean intensity 
relative to the present-day statistics.  Considering the 
model bias, the rainstorm in the future would occur 
even more frequently than those indicated in Table 4 
and its average intensity would be stronger than those 
given in Table 5.  To provide a range of variability of 
the test statistics, a nonparametric BCa bootstrap 
technique is used for all three datasets (i.e., actual 
observations, GCM outputs from current climate, 
future GCM simulations).      
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