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Abstract

In this research, a new score is proposed to evaluate the performance of binary probabilistic 

forecasts based on statistical predictive models. This new score utilizes the Kullback-Leibler 

divergence between the “original” probability density function (PDF) generated the forecast value 

and a “modified” PDF. The “original” PDF is indeed the distribution used to provide predictions, 

and is constructed on the basis of a certain statistical model; while the “modified” PDF is 

constructed with extra information of new observations. This new score can be decomposed into 

two components: one is the assessment for the forecast accuracy and the other is for systematic 

precision. Furthermore, it can be shown that the first part about precision can take into account the 

uncertainty inherited in the statistical model considered for forecast, and the second part about 

accuracy is equivalent to the divergence score. 
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1. Introduction 

Many statistical models have been proposed in recent 

years for prediction of binary weather events, see, for 

example, the review by Casati et al. (2008).The 

verification of such forecasts generated from statistical 

models, however, is often limited to single point 

verification like Brier score (Brier 1950). Alternative 

verification scores based on information theory include 

the ignorance score (Good 1952; Roulston and Smith 

2002) and the divergence score (Weijs et al. 2010). The 

divergence score is simply the Kullback-Leibler 

divergence (Kullback and Leibler 1951) from the 

perspective of single forecast verification; while the 

ignorance score is the negative logarithm of the forecast 

value measuring the information deficit. Both were 

advocated over Brier score (Bröcker and Smith 2007) 

because they are shown to be proper and they 

accommodate a penalty term in evaluations. Nevertheless, 

these verification scores fail to account for the 

uncertainty inherited in the statistical models used to 

generate weather forecasts. An appropriate verification 

score for any prediction should include not only the point 

estimate but also the uncertainty of that estimate. In other 

words, a high level uncertainty implies a low level 

confidence in the forecast, and a good verification score 

should be able to reflect this characteristic.   

This article proposes a probabilistic verification 

score to evaluate the forecasts generated from statistical 

prediction models. This verification score is distribution 

oriented, and can take into account the prediction 

variation. The proposed score measures the “distance” 

between two probability density functions (PDFs), one is 

the “original” PDF for forecast and the other is a 
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3. Interpretation of the new score “modified” (or called updated) PDF. The “original” PDF 

is constructed based on a sampling distribution; while the 

“modified” PDF is constructed with extra information of 

the new observation through conditional probability 

derivation.

There are many published methods measuring the 

difference between two probability density functions. In 

this article, we use Kullback-Leibler divergence for 

calculation.

2. Score determination For two continuous random variables G and F with 

density functions � �xg  and , respectively, the  

Kullback-Leibler divergence from G to F is defined as: 

� �xf
Considering a binary event  following a 

Bernoulli distribution with an unknown parameter .

Based on historical data 

� �1,0*�Y

p

y~  and a statistical forecast 

model )~|( yp� , the estimate of , denoted as , can 

be derived based on standard statistical tools. Take the 

simplest example, it can be the mean of all previous data, 

representing the estimated probability of 

p p̂

*Y  being 1. 

In general, the forecast  for *y *Y follows a 

distribution 
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In general, G represents the “real” distribution and 

F represents another model or a prediction. Here we 

calculate the distance from the original to the modified 

distribution as the verification score:  
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derived from )~|( yp�  and the Bernoulli density of y~ . After simple algebra, this score becomes  

We defined the “origin distribution” )~|( yp�

containing information from previous observations y~

and prior knowledge in , and utilize it to provide an 

estimate . The “modified distribution” 

p

p̂ *),~| yy( p� is

the distribution with extra information from the new 

observation .The distance  *y
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For the first term in each case, between these two distributions can represent the 

magnitude of the influence of the new observation on the 

inference of the parameter . Therefore, it can be used as 

a verification criterion. 
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Based on the above equations, we can calculate the 

probability density function of  conditioning on the 

existing outcome  with Bayes’ rule: 

p
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� when 0* �y . This term can be interpreted as the 

adjusted uncertainty. The numerators are entropy-like 
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functions that represent the uncertainty of the prediction. 

The denominator is the point estimate. If the point 

estimates is close to , the denominator becomes large, 

and the function decreases. In other words, the first part 

represents the precision of the statistical model. 
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As for the second part, it is 
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when . This is the same as the divergence score 

proposed by Weijs et al (2010). As mentioned in Section 

1, the divergence score is equal to the ignorance score 

but different in the logarithmic base. In addition, the 

divergence score is a verification criterion of the single 

value forecast and can be separated according to the 

classic reliability-resolution-uncertainty decomposition. 

It represents the quality derived from the point estimate 

of the statistical predictive model. The details of 

calculation will be provided in appendix. 
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Combining two equations above, we have 
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