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Abstract 
 

     The El Niño/Southern Oscillation (ENSO) is the most important natural part of the global climate variability 
and is also a primary source for inter-annual climate variability. Two key indicators of ENSO phenomenon: 
Southern Oscillation Index (SOI) and the Niño Regional Sea Surface Temperature (SST) Indices measure the 
ENSO fluctuations over the atmosphere and the ocean, respectively. The values of both indicators are based on 
anomalies with the annual cycle signals removed (seasonal adjustment) from the data. 
     Annual cycle signals are usually estimated by the climatological values based on either the whole time pe-
riod or a selected base period. Either of them would lead to time independent climatological estimates, which is a 
weak assumption, and the resulting anomalies may alter the conclusions on certain ENSO related phenomena, 
which are sensitive to the anomaly values.  
     We compare the climatological seasonal adjustment methodology with three other methods, STL (Loess 
based Seasonal-Trend Decomposition), DWT (Discrete Wavelet Transform) and EEMD (Ensemble Empirical 
Mode Decomposition), evaluate their performances, and provide guidelines on which seasonal adjustment me-
thods to choose for handling seasonal variability in climate data processing under different circumstances. 
     This study also shows that the impacts of seasonal adjustment methods on the correlations analysis between 
the ENSO atmospheric indicator and the oceanic indicator, and the interpretation of ENSO temporal-spatial pat-
terns are substantial. (a) DWT and EEMD provide a prominent measurement of the correlations among climatic 
variables and therefore enhance the capabilities of analyzing the relationships among different natural phenomena 
with inter-annual temporal scales. (b) Inconsistent conclusions on the Eastward-shifting of ENSO peak time over 
tropical and sub-tropical Pacific obtained from the four seasonal adjustment methods suggests that when one ana-
lyzes the inter-decadal variation of ENSO signal, one should choose a seasonal adjustment method with caution 
since the temporal-spatial patterns could be affected. Applying both fixed and modulated seasonal adjustment me-
thods for the study of temporal-spatial pattern is suggested to achieve a convincing consistent conclusion. 
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1. Introduction 
 
     The El Niño/Southern Oscillation (ENSO) is the most 
important natural part of the global climate variability. It is also 
a primary source for inter-annual climate variability. The 
ENSO phenomenon is characterized by the appearance of ex-
tensive warm surface water over the tropical-subtropical Pacific 
at 2-7 year intervals (Lau et al. 2000). This phenomenon is 
featured by the sea surface temperature (SST) and pressure 
fluctuation occurring in the basins of the central and eastern 
tropical Pacific and the Indian Ocean (Trenberth 2002). During 
ENSO events, the dramatic changes in precipitation, tempera-
ture, and water vapor patterns in region over the whole world 
lead to severe natural disasters. Hence, it is vital to develop ac-
curate ENSO measurement, monitor the phase and strength of 
ENSO events, study ENSO temporal and spatial distribution 
characteristics, and further understand the intrinsic changing 
trend of ENSO and its impacts on other natural phenomena. 

The two key indicators of ENSO phenomenon are the 
Southern Oscillation Index (SOI) and the Niño Regional Sea 
Surface Temperature (SST) Indices, which measure the ENSO 
fluctuations over the atmosphere and ocean, respectively 
(Bjerknes 1969). SOI is defined as the difference between de-
seasonalized, normalized sea-level pressure (SLP) anomalies 
over Tahiti and Darwin. Niño Regional SST indices are defined 
as the area-averaged SST anomalies over Niño regions. High 

negative values of SOI are usually associated with high positive 
values of SST anomalies indicating a warm event of ENSO 
called El Niño. The counterpart is called La Niña. Due to the 
limitation of SOI on spatial dimension, Niño Regional SST in-
dices have become the most popular indicators for monitoring 
the ENSO events. 

In the meteorological scientific community, the legacy 
approach of seasonal adjustment for anomaly measurement is 
to treat the seasonal cycle (annual cycle) as a fixed mean effect 
that does not change every year. The mean of the seasonal 
cycle is estimated by averaging the climate variable for each 
individual month over all the available years or over a specified 
period. These means, called the climatology, are then sub-
tracted from the original data to characterize variability from 
the mean seasonal cycle. In the following sections, we call this 
method as the Legacy method. 

Obviously, the global mean (the climatology calculated 
over all the available year) is not appropriate for SST anomaly 
measurement because it can be distorted by extreme SST val-
ues due to the irregular strength of ENSO events. As a result, 
the SST mean is highly skewed. Moreover, the mean is time 
dependent because including new data as time goes on will al-
ter the mean values. In order to avoid the skewed 
time-dependent means, scientists employ base periods to cal-
culate the climatology. The SST records over a selected base 
period are more representative and not severely impacted by 
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other climatic oscillations.  
The base period used to calculate SST anomalies is not 

unique. For example, the 30-year period between 1961 and 
1990 was once suggested by the World Meteorological Organ-
ization (WMO) and has been used as the base period in the ad-
justed optimum interpolation SST analysis (Smith and Rey-
nolds 1998) at National Oceanic and Atmospheric Administra-
tion (NOAA). Shea et al. (1992) suggested that the 30-year pe-
riod between 1950 and 1979 is a good base period because it 
avoids introduced errors due to the shift from uninsu-
lated-bucket temperatures to ship injection (Folland et al. 1984), 
and avoids the SST warmings in the Tropics, which began with 
the 1982-1983 ENSO event (Smith et al. 1994). This base pe-
riod is considered the most representative records in last cen-
tury. The most recent updated SST climatology is defined on 
the base period between 1971 and 2000 because scientists con-
sider SST observations in 1990s having better quality than 
those in 1960s. This base period is currently used by NOAA 
National Weather Service (NWS) to calculate Niño Regional 
SST indices. 

It is not difficult to notice the disadvantage of using cli-
matology to measure seasonal cycle in order to extract the 
anomalies. First, the selection of base period for SST climatol-
ogy is very subjective. It is based on scientists’ experiences and 
understanding of historical trends to decide the length and 
temporal location of base period.  Second, with the continuous 
acquisition of new SST observations, the time series are re-
shaped and scientists need to make timely update on the base 
period, resulting variation and inconsistency into the SST ano-
maly measurement. A comparison by Reynolds and Smith 
(1995) shows that even though the choice of SST climatology 
might not obscure a moderate to strong El Niño or La Niña 
event, the exceeding 0.5oC differences between the SST ano-
malies based on different climatology can lead to confusion 
about the existence of weak warm or cold ENSO conditions. 

Besides the shortcomings of utilizing climatology for 
seasonal cycle measurement and SST anomalies extraction 
discussed above, the issue on whether the climatic seasons need 
to be identical each year was raised. Many studies have shown 
that the season is the complex nonlinear response of atmos-
phere, land and oceans (Meyers 1982) and therefore it should 
not necessarily stay the same from year to year. Significant 
variations in seasonality have been found in many climate in-
dicators, such as temperature, pressure, and wind (Van Loon et 
al. 1993; Thomson 1995). Using climatology to extract anoma-
lies ignores the variability of seasonality and mixes up the an-
nual cycle with inter-annual variations, which could mislead 
researchers in understanding results from ENSO studies. 

To improve anomaly extraction accuracy, one has to take 
into account the seasonal variability. Scientists have explored 
many alternative methods to capture the variations in seasonal 
shape. Thomason (1995) measured the seasonal variations us-
ing a complex demodulation and suggested that the change in 
seasonal cycle may be caused by changes in the Sun’s luminos-
ity and greenhouse gas. Gu and Philander (1995) suggested that 
the amplitude of the seasonal cycle is affected by interannual 
variations in the depth of the thermoncline and in the intensity 
of the trade winds by using wavelet transform to catch modula-
tion of seasonal cycle. Setoh et al. (1999) employed wavelet 
analysis to reveal the seasonal cycle changes in ENSO signals 
between two epochs: 1950-1978 vs.1979-1997 and observed 
the eastward shifting of ENSO episodes over central and east 
Pacific ocean. Wu et al. (2008) recommended ensemble empir-
ical mode decomposition (EEMD) to extract the seasonal signal, 
so one can remove all possible annual and sub-harmonics vari-
ations from the original time series.  

Although several methodologies have been proposed to 

measure the seasonal cycle by allowing the seasonal cycle to 
change from year to year, there is, however, no consensus 
within the scientific community as to which methodology best 
captures the seasonal variations. Issues are raised regarding 
these methodologies, such as (1) their differences and similari-
ties, (2) the effects of methodology implementation on the 
analysis results, (3) whether there exists a best approach among 
these methodologies to measure the variations in seasonality, 
and (4) if the answer to (3) is ‘no,’ whether one can match a 
circumstance to the most suitable methodology to apply.  

This paper intends to provide a comprehensive interpre-
tation of the seasonal adjustment methodologies for anomaly 
measurement associated with ESNO studies. Section 2 intro-
duces the SST and SOI data products used in this research. 
Section 3 describes the seasonal adjustment methodologies that 
are implemented to measure the seasonal variations. Section 4 
evaluates the performances of various seasonal adjustment me-
thods and compares them at both absolute and relative values 
through Niño regional SST indices comparison, the correlation 
with SOI, and ENSO temporal-spatial distribution patterns. 
Section 5 draws the conclusions. 

 

2. Data Sets 
 

The SST datasets used in this study are Hadley Centre 
Global Sea Surface Temperature (HadISST) datasets, available 
from National Center for Atmospheric Research (NCAR) web-
site. The data product provides the 1o by 1o latitude and longi-
tude spatially complete, monthly SST analysis for 1871 to date 
(Rayner et al. 2006).  

The SST anomalies based on Niño-1+2, Niño-3, Niño-3.4, 
and Niño-4 regions in central and eastern equatorial Pacific are 
calculated since they are most common indices to monitor 
ENSO events (e.g., Handley et al. 2003; Barnston et al. 1997; 
Trenberth & Stepaniak 2001).  

The monthly SOI is calculated based on standardized sea 
level pressure difference between Tahiti and Darwin, Australia 
and has been considered as an optimal index that combines the 
SO into one series. The correlation coefficient between SST in-
dices and SOI is around -0.67 based on the Legacy method. A 
sustained negative SOI and positive SST indicate an El Niño 
episode. Conversely, a lasting positive SOI and negative SST 
indicate a La Niña Event. 

The SOI datasets as well as the SLP values for Tahiti and 
Darwin are available from the website of Climate & Global 
Dynamics Division (CGD). In this study, the SOI values are 
calculated based on the same algorithm used by Ropelewski 
and Jones (1987) but with different seasonal adjustment me-
thods for anomalies.  

 

3. Methods for Seasonal Adjustment 
 

Different methods for obtaining anomaly values are used 
for studies of climate related phenomena, and the challenging 
task is the seasonal variation modeling. Cleveland (1990) stated 
that there exists an intrinsic ambiguity in the definition of sea-
sonal variation. In fact, this ambiguity is true for all seasonal 
decomposition procedures (Carlin and Dempster 1989). More-
over, seasonal variation highly depends on the characteristics of 
time series. Data from different problems could have very dif-
ferent shape of seasonal variation. For example, the seasonality 
of an economic time series is not only influenced by the cli-
matic change, but also impacted by holiday calendars. Hence, 
to successfully separate seasonal, trend and other cyclical vari-
ations and to avoid seasonal and other components competing 
for variation, not only depend on the selection of models, but 
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also rely on the choice of model input parameters. In this paper, 
four seasonal adjustment methods, the so called legacy method, 
the seasonal–trend decomposition procedure based on loess 
(STL), Discrete Wavelet Transform (DWT) and Ensemble Em-
pirical Mode Decomposition (EEMD) procedure are discussed. 
� Legacy Method 

The Legacy method is to treat the seasonal cycle as a 
fixed mean effect that does not change every year. The mean of 
the seasonal cycle, called climatology, is estimated by averag-
ing a climate variable for each individual month over a speci-
fied period. These means are then subtracted from the original 
data to characterize variability from the mean seasonal cycle. 
The methodology is simple and straightforward, but unavoida-
bly has drawbacks previously described. In this work, this me-
thod is used as a benchmark to compare to other seasonal ad-
justment methods. The anomaly estimation from the legacy 
method is calculated as: 

� �LegacyLegacy SYMAAnomaly �� 3
,         (1) 

where MA3 represents the 3 month moving average, Y 
represents the original time series and Slegacy is the climatology, 
the mean of a climate variable for each individual month over 
the base period 1971-2000. 
� Seasonal–Trend Decomposition Based on Loess 
(STL) 

STL is a filtering procedure for decomposing a time se-
ries into trend, seasonal, and remainder components (Cleveland 
et al. 1990), or in short, Y=S+T+R, where Y is the data, S is the 
seasonal component, T is the trend component, and R is the 
remainder. STL has a simple and efficient computer imple-
mentation that consists of a sequence of applications of the 
loess (local weighted regression) smoothers (Cleveland & Dev-
lin 1988).  

STL consists of two recursive procedures: an inner loop 
nested inside an outer loop.  The seasonal and trend compo-
nents are updated in each pass of inner loop. Each pass of the 
outer loop consists of a group of the inner loops followed by a 
computation of robustness weights. The robustness weights are 
used in the next run of inner loop to reduce the impacts of tran-
sient and aberrant abnormal behavior on the trend and seasonal 
components.  

The anomaly estimation from STL method is calculated 
as: 

          � �STLSTL SYMAAnomaly �� 3
             (2)                 

and SSTL is the estimated seasonal component from STL pro-
cedure. STL algorithm provides the flexibility in specifying the 
amounts of variation in the trend and seasonal components 
through the inner loop. It also captures the robust trend and 
seasonal components that are not distorted by transient, aber-
rant behavior in the data using the robustness weights in the 
outer loop.  

One difficult with the STL is that there are many para-
meters involved in the procedure. Selecting the appropriate pa-
rameters is important as it could significantly affect the amount 
of seasonal variation (the smoothness of seasonal component). 
STL algorithm has six parameters. They are (1) n(i): the number 
of passes in the inner loop; (2) n(o): the number of passes in the 
outer loop; (3) n(p): the number of observations in each cycle of 
the seasonal component; (4) n(l): the smoothing parameter for 
the low-pass filter; (5) n(t): the smoothing parameter for the 
trend component; and (6) n(s): the smoothing parameter for the 
seasonal component.  The disciplines to choose values for 
these parameters are given in Cleveland et al. (1990). Only one 
of the parameters, n(s), is discussed below. 

The values of n(s) affect the smoothness of each 
cycle-subseries, series of monthly values of the same month in 
all years. The choice of n(s) also determines the variation in the 

data that makes up the seasonal component.  A STL diagnos-
tic graphical method such as the seasonal-diagnostic plot could 
be helpful to decide n(s). Fig. 1 shows the seasonal-diagnostic 
plot for the Niño-3.4 SST time series with different n(s). As n(s) 
increases, the resulting cycle-subseries becomes smoother. 
When n(s) goes to infinite, each cycle- subseries becomes a ho-
rizontal line with no variance, which implies the seasonal 
component estimated from STL becomes a climatology, that is, 
the mean of the climate variable for each individual month over 
all the available years. In many situations, the final decision for 
n(s) value is based on knowledge about the mechanism generat-
ing the series and the goal of analysis. 

 

 
Fig. 1. Seasonal-Diagnostic Plot for Niño-3.4 SST time series with 
n(s) = 7 (top panel) and n(s) = 15 (bottom panel). The ordinate of 
each panel is the temperature in oC. The lines represent the norma-
lized seasonal component by the global mean. The dots are the 
normalized seasonal component plus the remainder. 
� Discrete Wavelet Transform (DWT) 

DWT transforms a discrete signal into a discrete wavelet 
representation, and DWT algorithms are easy to implement and 
computationally efficient. DWT uses one high-pass filter and 
one low-pass filter to transform the time series into one set of 
detail coefficients (cD1) and one set of approximation coeffi-
cients (cA1). This transformation is usually applied recursively 
on the approximation coefficients until the desired number of 
iterations is reached. At the end of the iterations, one obtains 
cAi, cDi, , cDi-1, ,…, cD1, , where i is the number of iterations.  
After one decides which scale of cD needs to be removed, the 
approximated signal is reconstructed using only the approxima-
tion coefficients and the rest of the detail coefficients. This al-
gorithm allows us to reconstruct the signal using only the de-
sired scales by removing certain scale details from the original 
series.  

The equation to estimate the anomaly using DWT is 

� �iiDWT AmeanAAnomaly �� ,            (3) 
where Ai is the i-th level approximation and i (the number of 
decomposition levels for DWT) should be determined so that 
the seasonal signals are removed in the detail functions of the 
previous levels (Yu 2010). In this work, Daubechies 7, an 
asymmetric and orthogonal wavelet basis, is chosen to perform 
DWT (Kaiser 1994) using Matlab ‘Wavedec’ function (Mallat 
1989). 
� Ensemble Empirical Mode Decomposition (EEMD) 

Empirical Mode Decomposition (EMD) (Huang et al. 
1998) is a method of breaking down a signal without leaving 
the time domain. It is a powerful tool for adaptive multiscale 
analysis of nonstationary signals. The process is useful for 
analyzing natural signals, which are most often non-linear and 
non-stationary. EMD filters out functions, which form a com-
plete and nearly orthogonal basis for the original signal. The 
functions, known as Intrinsic Mode Functions (IMFs), are suf-
ficient to describe the signal, even though they are not neces-
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sarily orthogonal. The fact that the functions into which a sig-
nal is decomposed are in the time-domain and of the same 
length as the original signal allows varying frequency in time to 
be preserved.  

The process of EMD is known as “sifting through enve-
lopes” (Huang et al. 1998). Through this process, a time series 
is decomposed in to a group of IMF components and a re-
mainder, which is either very small or monotonic, and the 
whole decomposition is guaranteed to be completed with a fi-
nite number of modes (Rilling 2003). In the EMD process, high 
frequency signals will be picked up first. The process can stop 
at any level, and of course, the remainder in this case contains 
low frequency signals. 

One problem with EMD is the mode mixing as an IMF 
consisting of oscillations of dramatically different scales, or 
more than one IMFs containing signal of the same or compara-
ble scales (Wu and Huang 2009). Ensemble Empirical Mode 
Decomposition (EEMD), a noise-assisted data analysis method, 
is an enhanced version of EMD designed primarily for solving 
the mode-mixing problem (Wu and Huang 2009). In EEMD, a 
random white noise with zero mean and variance �2 is added to 
the original data before applying the EMD procedure. The 
EMD steps are repeated n times and the ensemble IMFs from 
the n samples will be the resulting IMFs.  

The standard deviation of error introduced into the final 
ensemble IMFs is �’= �/sqrt(n), and � and n are the key para-
meters affecting the decomposition results of EEMD. If � is too 
small, the noise may not affect the local extrema enough to 
solve the mode-mixing issue. When � is too big, significant 
noise will be brought into the data if the ensemble sample size 
n is not big enough. However, if large � has to be introduced, 
we can increase the ensemble sample size n in order to make �’ 
trivial.  

The equation to estimate anomaly using EEMD is given 
as 

� �iiEEMD rmeanrAnomaly �� ,          (4) 
where ri is the i-th level residue and i is the number of decom-
position levels for EEMD that is decided by a computational 
algorithm (Yu 2010). 
 
4. Sensitivity of ENSO to Season Adjustment 
Methods 
 

To analyze the impacts of seasonal adjustment methods 
on the ENSO studies, two types of comparison are performed 
to capture the whole picture. One is absolute value comparison, 
which is to directly compare the values of SST anomaly esti-
mations (e.g., Thomson 1995; Trenberth 1997; Trenberth et al. 
2001). The other is relative values comparison by comparing 
SST anomaly estimations through a pattern or distribution (e.g., 
Rasmusson & Carpenter 1982; Wang 1995).  

Four seasonal adjustment methods are carried out to es-
timate SST and SLP anomalies. Both Niño regional SST indic-
es and SOI are processed using SST and SLP anomalies de-
rived by these methods. The effects of the seasonal adjustment 
methods on the amplitude of SST anomaly values are examined 
by performing a direct comparison on the SST anomaly values; 
recalculating the correlation coefficients between Niño regional 
SST indices and SOI; and investigating the temporal-spatial 
distributions based on CWT and PCA and the sensitivity of the 
ENSO temporal-spatial patterns to the seasonal adjustment 
methods (Yu 2010). Only selected results on the direct value 
comparison, correlation coefficients, and the spatio-temporal 
patterns are briefly described here.  

The parameters selected are based on a hypothesis testing 
mechanism and the testing results. The specific values for n(s) 

are 11 for Niño-3.4 SSTA and 17 and 13 for Darwin and Tahiti 
SLP, respectively in STL procedure. In EEMD, � is 0.8 for 
Nino-3.4 index and 0.6 for SLP, and the sample size (n) is 400 
for all cases. Three levels are chosen for both DWT and EEMD 
methods (i=3). The base periods for the legacy method are 
1971-2000 for SST and 1951-80 for SLP, respectively.  

� Direct Comparison 
Unlike STL, DWT and EEMD separate not only the 

12-month periodic harmonic but also all sub-annual signals 
from the original SST time series. Therefore, SST anomalies 
from DWT and EEMD are smoother than those processed by 
the Legacy and STL methods. The wavelet power spectrum 
show nearly zero wavelet power for high frequency signals in 
DWT and EEMD spectrum maps with the removal of all 
sub-annual variations (see Fig. 4). Hence, the three months 
running mean is not necessary for SST anomaly estimations for 
DWT and EEMD. Fig. 2 shows the time series of Niño-3.4 
SSTA index from 1870 to 2008 processed by all four seasonal 
adjustment methods. Compared to the Legacy method and 
STL,,both DWT and EEMD methods result in smoother time 
series and smaller amplitude.  

 

 
Fig. 2. Niño-3.4 SSTA Index (oC) Time Series over 1870-2008 using 
Legacy, STL, DWT and EEMD (from left to right) methods.  

� Correlation 
The correlation coefficient between SOI and SST anoma-

lies measures how closely SO and El Niño phenomenon corre-
lates. For example, Hanley et al. (2003) examined the different 
Niño Regional SST indices by correlating those indices with 
SOI. By evaluating the correlation coefficients between Niño 
regional SST indices and SOI, both processed by different sea-
sonal adjustment methods, one can examine whether seasonal 
adjustment methods have an impact on the correlation mea-
surement between the two climatic indicators. Both Pearson’s 
product moment coefficient (parametric) and Spearman’s rank 
correlation coefficient (nonparametric) are employed because 
Pearson’s coefficient can be adversely affected when there are 
outliers and it can only measure linear relationships between 
variables. Both correlation measures give very similar results 
here, and therefore, only the results of Pearson’s correlation 
coefficients between SOI and Niño-3.4 SST index are given in 
Table 1. Associated with each correlation value, a 95% confi-
dence interval (CI) based on the bootstrap simulation is also 
given.    

The correlation result suggests that different seasonal ad-
justment methods have significant impacts on the correlation 
measurement. For example, the correlation coefficient between 
Niño-3.4 SST index and SOI computed from Legacy method is 
-0.62 with [-0.65, -0.59] 95% confidence interval. By using ei-
ther DWT or EEMD method, the correlation coefficient is in-
creased to -0.82 with [-0.84, -0.8] 95% confidence interval. Our 
study further suggests that modulated seasonal component es-
timation using a seasonal adjustment method, provides a more 
explicit measurement of the correlations among climatic va-
riables and therefore enhance the analysis of relationships 
among natural phenomena. The impacts of different seasonal 
adjustment methods on correlation coefficients also are appli-
cable to the analysis to teleconnection (Glantz 1991; Trenberth 
1997) and the climate network (Tsonis et al. 2006; 2008).  
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Table 1. Pearson Correlation Coefficient (CC) values and confi-
deence interval (95% CI) between SOI and Niño-3.4 SST Index. 

Methods CC 95% CI 

Legacy -0.62 [-0.65, -0.59] 

STL -0.74 [-0.76, -0.71] 

DWT -0.82 [-0.84, -0.80] 

EEMD -0.82 [-0.84, -0.80] 

� Eastward-Shifting of ENSO Spatial Pattern  
The EOF analysis results show empirically that the choice of 
seasonal adjustment methods does not affect the spa-
tio-temporal patterns. However, if one were to monitor the 
changes of spatio-temporal patterns along either spatial or 
temporal domain, the seasonal adjustment method needs to be 
carefully chosen. In this work, the eastward-shifting of ENSO 
spatial pattern is investigated to highlight this point. 

The length, strength, regime of ENSO events was 
changed significantly after 1976. Comparisons on the earlier 
(1950-1978) and later (1979-1992) ENSO epochs have been 
discussed in many papers (e.g. Nitta and Yamada 1989; Mit-
chell and Wallace 1996; Setoh et al. 1999). Compared to the 
ones before 1976, scientists stated that the ‘later’ ENSO epi-
sodes (after 1976) have longer timescale, increased SST ano-
malies over central and eastern tropical Pacific, and the east-
ward-shifted regime where the peak of ENSO event occurred. 

Fig. 3 shows the wavelet power spectrum of CWT for the 
averaged SSTA based on the legacy method along every 10o 
longitude band between 5oN-5oS latitude. There are three major 
ENSO epochs in the 1971-1973, 1986-1988, and 1997-1998 
time frames with strong wavelet power in the 2-8 years com-
monly known ENSO periods. The events during 1970s started 
to peak in the central Pacific between 140oW-130oW and the 
events after 1980 have the highest intensity in the eastern Pa-
cific starting at 100oW-90oW. However, the results from the 
EEMD based SSTA in Fig. 4 show that all three epochs tend to 
peaked at the same longitude band, 100oW-90oW. As men-
tioned before, the results based on STL are similar to those 
based on the legacy method and the results from DWT are sim-
ilar to those based on EEMD.  

This observation implies that the seasonal variation caus-
es the eastward shifting of ENSO peak time as the removal of 
seasonal variations from SST using DWT and EEMD largely 
weakens the eastward-shifting phenomenon. This implication 
suggests that there is doubt on whether there truly exists the 
eastward shifting in the regime of ENSO peak time as the in-
ter-decadal variation of ENSO signal or the eastward shifting 
could just be a result of the inter-annual variation of seasonal 
cycle.  

The above discussion underscores the importance of sea-
sonal adjustment method for anomaly measurement when ana-
lyzing a changing process of phenomena associated with ENSO. 
The best way to validate the analysis result is to draw consis-
tent conclusion by comparing results obtained from both legacy 
and DWT/EEMD methods.  

 

 
Fig. 3. Wavelet power spectrum for SSTA time series based on the 
Legacy method. The heavy black line is the ‘cone-of-influence’ line 
(Torrence & Compo 1998). 

 
Fig. 4. Same as Fig. 3 except for SSTA based on EEMD method. 
 
5. Concluding Remarks 
 

Compared to the Legacy method and STL, DWT and 
EEMD have smoother estimations of SST anomalies as they 
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remove both annual and sub-annual variations from the original 
data. They also provide a prominent measurement of the corre-
lations among climatic variables and therefore enhance the ca-
pabilities of analyzing the relationships among different natural 
phenomena with inter-annual temporal scales. The four sea-
sonal adjustment methods show the different spatial location of 
the emerging peak time of ENSO epochs over tropical and 
sub-tropical Pacific, and the results suggest that when analyz-
ing the inter-decadal variation of ENSO signal, one should 
carefully choose a seasonal adjustment method since the tem-
poral-spatial patterns could be affected. Applying both fixed 
and modulated seasonal adjustment methods for the study of 
temporal-spatial pattern is suggested in order to obtain a con-
vincing consistent conclusion. The same strategy should be ap-
plied to study the regional and local impacts of ENSO and oth-
er inter-annual climate events. 
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