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Abstract 

Asian Sand and Dust Storm (SDS) is one seasonal meteorological phenomenon 
which originates in the deserts of Mongolia, northern China and Kazakhstan where high-
speed surface winds and intense dust storms kick up dense clouds of fine, dry soil particles, 
and affects much of East Asia sporadically during the springtime. In March 2010,  several 
severe SDSs whipped hundreds of miles not only in mainland China but also reached 
Hong Kong and Taiwan. . In the last decade, Asian SDS has become one of the most 
serious environment issues, therefore, it is important to develop the capabilities to detect, 
monitor, and forecast Asian SDS effectively.  Despite of the construction of ground 
observation stations, satellite remote sensing (RS) is critically important for SDS 
monitoring because of its advantages in spatial coverage.  RS can be used to detect the 
origin of SDS and monitor the development and transport. In addition, RS can provide 
initial conditions and boundary conditions for SDS model simulation and data assimilation.    

Many space-borne sensors have been used for SDS study, such as MODIS, AIRS, 
TOMS, MISR, OMI, CALIPSO, SeaWIFS, AVHRR, etc. Each of these sensors has 
certain advantages and disadvantages for SDS study.  With four overpasses daily (two 
daytime and two nighttime), MODIS (Terra MODIS and Aqua MODIS) can provide 
spatial information of SDS at 1km resolution, but can’t retrieve the vertical information of 
SDS effectively. CALIPSO can provide vertical information of SDS at good resolution, 
but it has very narrow swatch, only can cover a small part of the earth daily, not feasible 
for operational monitoring of SDS. OMI can provide some chemical properties of SDS, 
but the spatial resolution is low.  Although the spatial resolution of AIRS is low, it can 
provide vertical profiles of the atmosphere, which are very helpful to analyze the physical 
properties of SDS. To monitor the origin and transport of SDS more effectively, spatial 
and vertical information from multiple sensors should be integrated synergistically. Our 
early studies have demonstrated the capabilities and advantages of Asian SDS detection 
with multiple sensors. In this study, we focus on further integration of more sensors, 
including MODIS, CALIPSO, AIRS, and OMI, for comprehensive study of Asian SDS. 
Several SDS cases will be used to demonstrate capabilities of the integrated approach, and 
the potential for  improved monitoring of Asian SDS.��
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