
 

Investigation of Rapid Intensification Conditions of Tropical Cyclones with 
Data Mining Techniques 

 
Ruixin Yang and Jiang Tang 

Department of Geography and Geoinformation Science 
George Mason University 
Fairfax, VA 22030-4444 

ryang@gmu.edu 
 

Abstract 

Rapidly intensifying (RI) tropical cyclones (TC) are the major error sources in TC intensity 
forecasting. In order to improve the estimates of RI probability, association rules as a data mining 
technique are used to facilitate the process of looking for candidate sets of conditions which have strong 
interactions with rapidly intensifying TCs. Compared to the relation analysis method, the technique of 
association rules can not only simplify the exploration of associations among multiple conditions but 
also provide an as complete as possible picture of relations among those conditions. The association 
rule data mining was used to investigate the RI conditions based on the database for SHIPS (Statistical 
Hurricane Intensity Prediction Scheme), an operational statistical-dynamical hurricane intensity 
forecasting model. The mining results identified a reduced predictor set with fewer factors but 
improved RI probability estimates compared to the results based on relation analysis. That is, the RI 
probability with three conditions satisfied: low vertical shear, high humidity, and TC being in 
intensification phase is higher than that with five satisfied conditions including the above three plus 
high sea surface temperature and a intensity far away from the maximum potential intensity. Moreover, 
for a given number of constraints affecting the RI process, the data mining technique can identify the 
combination of the factors which give the largest RI probabilities. One such combination (high latitude, 
low longitude, the TC being in an intensification phase, an initial intensity far away from the maximum 
potential intensity, high steering layer value, and low relative eddy flux convergence) gives such a high 
RI probability that the combination can be considered as a “sufficient” condition for RI, which almost 
guarantees an RI will take place. In this paper, above results are described and an outline is sketched on 
how to use data mining techniques to improve the TC intensity forecasting skills. 
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1. Introduction 
 
Tropical Cyclone (TC) is one of most costly natural 

disasters when the TC intensity is high. Accurate prediction 
of TC behavior including tracking and intensity is necessary 
in order to reduce the potential damages. Although the TC 
track forecast is of relatively high skill, the intensity 
forecasting is still a challenge (DeMaria et al. 2007; 
Franklin 2008; Rappaport et al. 2009).  

The difficulty of the TC intensity forecasting reflects 
the fact that there are many factors controlling TC intensity 
changes (Wang & Wu 2004; DeMaria et al. 2007). Broad 
studies are carried out on the favorable factors for TC 
intensification, which include warm ocean eddies (Shay et al. 
2000; Hong et al. 2000; Wu et al. 2007), the contraction of 
an outer eyewall (Willoughby et al. 1982; Willoughby and 
Black 1996; Lee and Bell 2007; Kossin & Sitkowski 2009; 
Kuo et al. 2009), an environment with low vertical shear 
(Gray 1968; Merrill 1988; DeMaria and Kaplan 1994; 
DeMaria 1996; Frank and Ritchie 1999, 2001; Zeng et al. 
2007, 2008), interactions between the upper-level trough 

and a TC (Molinari and Vollaro 1989, 1990; DeMaria et al. 
1993; Bosart et al. 2000), dissipative heat (Jin et al. 2007) 
and even cloud microphysics (Wang 2002) and isotopic 
concentrations (Gedzelman et al. 2003). 

Most of the previous studies were largely focusing on 
only one of three categories of factors, ocean characters, 
inner-core processes, and environmental interactions, and it 
is well known that intensity changes depend on a 
combination of those factors (Zhu et al. 2004). Holliday and 
Thompsom (1979) examined the rapidly intensifying 
northwest Pacific typhoons and observed that a sufficiently 
deep layer of warm water, the development at night time, 
and a smaller size of eye were necessary for those RI 
typhoons. DeMaria and Kaplan (1994) studied Atlantic TCs 
and observed that the TCs with a smaller size, with a greater 
potential to reach their maximum potential intensity, with a 
faster intensification history, and in an environment with 
low vertical shear and weak upper-level forcing could have 
the largest 48-hour intensification rates. In a study of the 
rapid intensification of Hurricane Opal (1985), Bosart et al. 
(2000) concluded that its RI was resulted from a 
combination of several factors: enhanced divergence, low 
vertical shear and the enhanced heat and moisture from a 
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warm Gulf eddy. Kaplan and DeMaria (2003) examined the 
large-scale characteristics of rapidly intensifying Atlantic 
tropical cyclones from 1989-2000 using the NHC HURDAT 
file and the SHIPS database. Their results confirmed the 
aforementioned studies. Furthermore a scheme to estimate 
the probability of RI was developed in their study by 
combining the thresholds of the five persistence and 
synoptic predictors: the persistence of intensity change, the 
vertical shear, the sea surface temperature, the potential to 
reach the maximum potential intensity, and the moisture 
content in the lower atmosphere.  

The goal of this study is to introduce the technique of 
association rules from the data mining research area as an 
“unsupervised,” “automatic” data exploration method to 
discover “multiple-to-one” associations among a large 
number of environmental characteristics that are responsible 
for tropical cyclones which will be rapidly intensifying. The 
results from this technique can then be used to formulate the 
hypotheses regarding the underlying physical mechanisms, 
which can be used as the guidance in the traditional 
statistical analysis, and even to improve RI forecasting. 

To satisfy the goal, the SHIPS 2003 dataset is used 
here to examine the ability of the association rule algorithm 
to discover the associated environmental conditions in rapid 
tropical cyclone development. The dataset construction, the 
RI definition, RI thresholds and RI probability definitions 
are followed those in Kaplan and DeMaria (2003, hereafter 
KD03) as much as possible. The purpose is to create a 
similar context as KD03 so that the results from the 
association rules can be easily mapped to and verified by the 
traditional statistical terms and methods. 

 
2. Data and Methods 
 
Data-SHIPS Dataset 

The datasets for this study are the NHC HURDAT file 
(Jarvinen et al. 1984) and the SHIPS 1982-2003 database 
(DeMaria and Kaplan 1994, 1999; DeMaria et al. 2005). A 
detailed description of the variables in the HURDAT and 
SHIPS datasets can be found in KD03. The HURDAT file 
consists of 6-hr estimates of position and maximum 
sustained surface wind speed for all named Atlantic TCs 
from 1851 to the present. The SHIPS database contains 
synoptic information for every 12 hr for all Atlantic TCs 
from 1982 to the present. In this study, the time period is 
limited to 1982-2003 due to the initial data availability. 

The two data sets are merged based on a methodology 
which is identical to that described in KD03 except for the 
consideration of the systems remaining over both water and 
tropical regions during the period from t – 12hr to t + 24hr, 
and for the non-developing tropical depressions. In total, 
there are 34 values (variables) for each case, and each 
variable was evaluated at the beginning (t=0h) of each 24-h 
period. The 0000 and 1200 UTC synoptic predictor values 
in the SHIPS database were averaged to estimate the 
magnitude of the corresponding values at 0600 and 1800 
UTC. KD03 uses only SHIPS data from 1989 to 2000. Since 

we have more data from 1982 to 2003, we divided the data 
into 3 subsets: 1989-2000, 1982-1988, and 2001-2003. In 
other words, we used the first subset as a training set to 
repeat the results of KD03, and used the last two subsets as 
testing sets for the conclusion. 

Furthermore, we divided the data into rapidly 
intensifying cases (RI) and non-rapidly intensifying cases 
(non-RI).  In the merged data set, there are 7497 records 
with 265 RI cases. However, to mine/analyze the data 
further, records with missing values were removed from the 
data set, which resulted in a total of 5505 valid records and 
the same 265 RI cases. For the 1989 to 2000 period, the 
reconstructed dataset contains a total of 3306 cases, which 
were from 135 distinct Atlantic TCs (0 tropical depressions, 
54 tropical storms, and 81 hurricanes). Abided by the RI 
definition proposed in KD03, that is, at least 30 knots of 
intensity increase in the next 24 hours, the 3306 cases are 
comprised of 169 RI cases and 3137 non-RI cases, from 53 
distinct TCs. A similar process is applied to datasets from 
1982-1988 and from 2001-2003. The numbers of cases after 
such divisions are listed in Table 1. 
Table 1. Total case numbers, RI case numbers, and RI 
probabilities (RIP) based on the sample means of RI cases for 
various time periods. 

Time Coverage Total RI RIP 
1982-1988 1170 60 5.1% 
1989-2000 3306 169 5.1% 
2001-2003 1029 36 3.5% 
1982-2003 5505 265 4.8% 

 

Method-Association Rule Algorithm 

To discover “multiple-to-one” associations among a 
large number of factors favoring rapidly intensifying TCs, 
we will “mine” the above cleaned data by using an 
association rule algorithm. Association rule induction 
(Agrawal et al. 1993) is a powerful method for market 
basket analysis, which aims at finding regularities in the 
shopping behavior of customers. An association rule is a 
rule like “Z�X, Y.” The items X and Y are called 
antecedents in the rule and Z is the consequent. This rule 
expresses an association between items X, Y, and Z. It states 
that if a customer is picked randomly and the customer 
selected items X and Y, it is likely that the customer also 
selected item Z. 

Usually, three parameters, support, confidence, and lift, 
are reported for mined association rules. The support 
estimates the probability P({X,Y,Z}), and the confidence  
estimates the probability P(Z|{X, Y}). An association rule 
“Z�X, Y” is strong if it has a large support and a high 
confidence. The third parameter, the lift (Silverstein et al. 
1998) is introduced as the ratio between the actual 
probability of the item set containing both antecedent and 
consequent divided by the product of the individual 
probabilities of the antecedent set and the consequent. That 
is, lift = P({X,Y,Z})/[P({X,Y})*P(Z)]. The lift measures the 
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dependency among the antecedents and the consequent of a 
rule. Lift values above one indicate a positive dependence, 
while those below one indicate a negative dependence.  

The version of the association rule algorithm used in 
this study is implemented by Borgelt (2009). The support 
value in this implementation is defined as P({X,Y}) instead 
of P({X,Y,Z}).  The practical description of the rule 
measurements (support, confidence, and lift) for this 
application is postponed to a later section with a real rule for 
RI. As in most data mining applications, data preprocessing 
is necessary before the association rule data mining 
algorithm can be applied. 

Data Discretization for Mining 

For the mining task, the original 34 attributes are 
reduced to 11 independent predictors as listed in Table 2. 
These predictors are chosen because KD03 found that the 
mean initial conditions of these predictors for RI cases and 
non-RI cases are statistically different at least at the 95% 
significance level based on an unequal-variance, two-sided t 
test. To mine those attributes with the association rule 
algorithm, we should convert continuous values of the 
attributes into disjoint conditions. Here, we divide the values 
into “High” or “Low” conditions based on the threshold 
values provided in KD03, which was derived from the mean 
values of the RI samples, as listed in Table 2. For example, 
“SHRD=L” means that the 850-200hPa vertical shear is less 
than 4.9 m/s. After the discretization processing, the 
antecedent set is of 22 (11X2) entries. 
Table 2. The 11 statistically significant predictors (from KD03, 
Table 4). The predictors DVMX, SHR, and SLYR in KD03 are 
renamed as IV12, SHRD, and PSLV here. 

Name Description Thres
hold 

IV12  Intensity change during 
the previous 12 hours. 

4.6 
m/s 

SHRD  850-200 hPa vertical 
shear. 

4.9 
m/s 

SST  Sea surface temperature. 28.4 
oC 

POT  Maximum potential 
intensity (MPI) – initial 
intensity 

47.6 
m/s 

RHLO  850-700 hPa relative 
humidity. 

69.7 %

LAT  Latitude 19.7 
oN 

LON  Longitude 63.2 
oW 

USTM  Zonal (u) component of 
storm motion. 

-3.1 
m/s 

U200  200 hPa zonal (u) 
component of wind 

-0.6 
m/s 

REFC  200 hPa relative eddy 
angular momentum flux 
convergence 

0.9 
m/s/day 

PSLV  Pressure of the center of 
mass of layer for which 
the environmental winds 

583.4 
hPa 

best match the current 
storm motion. 

 
3. Results 

 
Compared to statistical analysis, the advantage of the 
association rule data mining is that the technique can 
explore exhaustively associations among multiple 
conditions because it examines all possible combinations of 
frequent condition sets automatically. As a successful 
scientific data mining example, a rule “RI�SHRD=L, 
PD12=H, RHLO=H (supp=1.3%, conf=47.6%, 
lift=931.5%)” for the 1989-2000 period was mined out 
(Yang et al. 2007). In simple language, the rule tells us that 
there are 1.3% cases satisfying the three conditions, low 
vertical shear of horizontal wind (SHRD=L [<4.9m/s]), high 
humidity in the 850-700hPa level (RHLO=H [�69.7%]), and 
the TC being in intensification phase (IV12=H [�4.6m/s]). 
Among those cases for the 1989-2000 period, 47.6% of 
them underwent RI, and the ratio of this RI probability to 
the sample mean probability (5.1%) is 9.3, or 930% as given 
by the lift value (the inconsistency between the ratio and the 
given lift value is due to the round-off errors in the mining 
algorithm). The most noticeable feature about this rule is 
that the RIP mined out here with three conditions is higher 
than that found in KD03, which include the three conditions 
above and two additional conditions, high sea surface 
temperature (SST=H), and an intensity far away from the 
maximum potential intensity (POT=H). Following the same 
procedure and on the same data set here, the RIP with the 
five conditions is only 43.5%. 

One step further, one can use the association rule data 
mining technique to search for the “optimal” conditions 
which result in the highest RIP for a given number of 
conditions among the selected set (Yang et al. 2008). Figure 
1 shows the changes in highest RI probabilities with the 
number of the thresholds in the 22 predictor pool for 
different time periods. All curves demonstrate the same 
trend. That is, the highest RIPs increase with the numbers of 
predictors initially, reach the peak values when the number 
of predictors approaches five to seven (N=5-7), and then 
decrease with further increases of the numbers of predictors. 
These results demonstrate that the multiple factors together 
are responsible for the RI process of TCs. However, the 
number of factors will saturate at certain numbers. After that, 
the impacts of individual factors may cancel each other out, 
or may be replaced by other factors. 
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Figure 1. The highest RI probabilities for different number 
of thresholds and multiple time periods. 

 
The most striking result in Figure 1 is that the data 

mining algorithms identify certain cases with a 100% RI 
probability. These “perfect” results take place only for the 
three sub-periods but not for the whole period. This 
plausible result comes from the fact that the detailed 
“optimal” conditions for each subset period are different 
from each other, and as a result, the conditions and the RI 
probability for the whole time period are also different from 
those in individual sub-periods. For example, Table 3 lists 
the detailed conditions for the N=6 cases for different time 
periods. By carefully checking, one can see that no two 
groups give the same conditions although the RIP 
(confidence) is 100% for all three short periods. 

 
Table 3. Optimal conditions when N=6 for different time 

periods.The columns represented by “s,” “c,” and “i” give the 
values of support, confidence, and lift in percentages, 
respectively. 

Periods Detailed Conditions for N=6 s c i 

1982- 
1988 IV12=L,LAT=L,ZONX=L,POT=L,SHRD=L,RHLO=H 0.2 100 1950 
1989 
-2000 POT=L,SHRD=L,IV12=H,ZONX=H,RHLO=H,PSLV=H 0.2 100 1956.2
2001 
-2003 IV12=L,LAT=L,POT=L,U200=L,SST=H,REFC=H 0.2 100 2858.3
1982 
-2003 LON=L,REFC=L,IV12=H,LAT=H,POT=H,PSLV=H 0.1 85.7 1780.6

 
The sub-period “optimal” rules trigger one natural 

question: how well are those rules for other sub-periods. If a 
rule is useful, that rule should be mined as a valid one in  
other time periods, too. Table 4 lists the support, confidence 
and lift values of every optimal condition combination in 
other sub periods. These “optimal” rules defined for one 
sub-period do appear as good rules (i.e., lift > 1) in most of 
other sub periods, although with lower support, confidence, 
and lift values. In some cases, the exact rules with all 
conditions satisfied were not found, and rules will fewer 
conditions satisfied were found instead. 

One prominent result is that the optimal rules mined 
out for the three sub-periods work well for the whole time 

period. Although the confidence levels are lower than that 
for the optimal rule for the whole period, the support level is 
the same, and the lift values are much higher than one. This 
finding suggests that those rules are useful to estimate RIP 
values for TC cases because mining data for sub-periods 
may capture the RI conditions not common for a long time 
period but important in certain conditions and time periods. 
Those rules will be helpful if the mining results are used to 
help RI forecasting.  
Table 4. Support, confidence, and lift values in percentage 
(from left to right in each entry) of the optimal rules in other 
sub periods. 

  82-88 data 89-00 data 01-03 data 82-03 data 

82-88 
rule 

0.2,100.0,1950.0 X (only 5 cond.) 0.1,25,714.6 0.1,42.9,890.3 

89-00 
rule 

0.1,33.3,650.0 0.2,100.0,1956.2 X (only 5 cond.) 0.1,57.1,1187.1

01-03 
rule 

0.1,100.0,1950.0 X (only 4 cond.) 0.2,100.0,2858.3 0.1,25.0,519.3 

82-03 
rule 

0.1,100.0,1950.0 0.2,83.3,1630.2 X (only 5 cond.) 0.1,85.7,1780.6

 
One potential challenge for using the association rule 

mining results in RI studies and forecasting is the low 
support values, that is, small percentage of cases for each 
mined rule. Actually, due to the large number of predictors, 
the chance for any condition combination to appear is low, 
and the mined out rules give a relatively high confidence on 
the RIP values. Take the example of the whole time period, 
1982-2003, the highest RIP for the period is 85.7% when six 
conditions are working together. Detailed investigation 
showed that there are seven cases satisfying the six 
conditions in the whole data set, and six of them underwent 
RI (6/7=85.7%). The seven cases are traced back to the 
original data and it is found that the seven cases are actually 
from four TCs (Yang et al. 2008). The fact that relatively 
large numbers of divers TCs underwent RI when the above 
given conditions were satisfied and the extreme high RIP 
lead us to believe that the results from data mining are 
significant. Moreover, based on the individual tracing result, 
it is found that the only case in which the TC did not 
undergo a RI process is the case for Hurricane Karl at 0h of 
September 24, 1998. However, the intensity of Hurricane 
Karl increased from 35 knots to 50 knots in 24 hours and 
then to 75 knots in another 24 hours. Karl continued the 
intensification process after that until 0h of September 27 at 
90 knots. Therefore, it is quite reasonable to say that the six 
conditions together are favorable to the RI process in almost 
all cases. The mining results identify at least one 
“sufficient” condition for RI (Yang et al. 2008). Therefore, 
the results will not only shed light for understanding the RI 
processes and but also help to guide future RI forecasting. 

 
4. Concluding Remarks 

 
In this study the association rule mining technique has 

been successfully applied to rapid intensification of tropical 
cyclones, one major challenge for operational intensity 
forecasting (Rappaport et al. 2009; Kaplan et al. 2010). The 
long term goal of this work is to make the mining results 
useful for forecasting of TC intensity changes in general and 
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RI in particular. However, several issues in the data pre-
processing and post-processing processes should be 
investigated first since there is no clear guidance on what a 
scientist should be looking for before mining.  

The first challenge appears at how to choose the split 
value to separate a parameter into a “High” or “Low” value 
range during data pre-processing because the RIP values do 
depend on the threshold values of POT (Yang et al. 2008). 
Since the sample sizes of RI cases and non-RI cases are 
highly skewed, sophisticated methods such as the decision 
trees or Bayesian theory on two-class classification should 
be considered.  

Another challenge is to identify the “interesting” 
mined rules. Although the fact that association rule mining 
exhausts all of the combinations of the parameters is the 
major advantage to traditional one-to-one statistical 
comparison method, it also presents a stack of hay for a 
needle finder which limits its own usage, especially when 
the number of parameters are large as in the SHIPS database. 
Several rule pruning techniques must be considered in 
finding the most interesting rules. In our study the 
measurements of support, confidence and lift are used first 
as a standard practice to find truly correlated rules. In order 
to have a manageable number of truly correlated rules, the 
levels of support, confidence and lift are adjusted. Moreover, 
our study benefits from concise rule searching which further 
reduces the overlap among the truly correlated rules. 
Additionally, through hyper-edge search the hidden 
relationships among multiple parameters can be found even 
without any background knowledge of geosciences 

Although SHIPS is the most skillful among the NHC 
operational intensity forecasting models and it has been 
improved in the past, the linear feature limits further 
significant improvements (DeMaria 2009). Moreover the 
unanticipated RI process in TC development, which is one 
major challenge for intensity forecasting (KD03; Rappaport 
et al. 2009; Kaplan et al. 2010), is difficult to be correctly 
forecasted based on a global linear regression model. As 
such, an outline is given below for leveraging data mining 
techniques to improve statistical TC intensity forecasting in 
future studies. 

One possible solution is to use several piecewise 
regression models (Breiman et al. 1993). A set of 
association rules which have the complete coverage of the 
rapidly intensifying cases should be found first. The 
qualified rules must have a lift greater than 1 to guarantee 
the correlation is true. The qualified rules must be concise 
rules to avoid redundancy. The rule selection can start at the 
concise rules with the most support then go to the concise 
rules with smaller support. The confidence for the selected 
rules may vary. In order to avoid the problem of over-fitting, 
a qualified rule is better to cover cases from different TCs. 
The goal is to cover most of the rapidly intensifying cases, if 
not all, with as few rules as possible. The rules with large 
support may indicate the major processes controlling rapid 
intensification of TCs. The rules with small support reflect a 
particular process controlling several TCs. From the set of 
selected association rules, we can gain more understanding 

of the processes behind rapid intensifications. Later on a set 
of regression models can be established to estimate the 
actual amount of intensity change based on the probabilities 
of rapid intensification. 

The above piece-wise model needs a relatively 
accurate estimate of probabilities of rapid intensification. An 
RI Index (RII) should be established to assess this 
probability for each forecast. Kaplan et al. (2010) developed 
an enhanced version of RII based on the work of KD03. The 
results from this work are most suitable to develop a similar 
RI index with a totally different methodology.  

Another possible future work is to consider other data 
mining techniques such as the log-linear model proposed by 
Wu et al. (2003) and the chi-square test proposed by 
DuMouchel and Pregibon (2001) to explore infrequent but 
surprising association rules. 
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