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Abstract

In this paper, a modified leap-frog finite difference (FD) scheme is developed to solve Nonlinear
Shallow Water Equations (NSWE). By adjusting the FD mesh system and modifying the leap-frog
algorithm, the numerical dispersion is manipulated to mimic the physical frequency dispersion for water
waves in the regime of intermediate water depth. The resulting numerical scheme is suitable for weakly
dispersive waves over a slowly varying water depth. A numerical experiment has been carried out fo
demonstrate that the results of the new numerical scheme agree well with those obtained by directly
solving Boussinesg-type models for shoaling and refraction over a slowly varying bathymetry. Most
importantly, the present aigorithm is much more computational efficient than existing Boussinesg-type
models, making it an excellent alternative tool for simulating tsunami waves when the freguency

dispersion needs to be considered.
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1. Introduction

In the past several decades, several numerical
models have been developed for calculating transoceanic
tsunami propagation. Most of these numerical models
are based on the Shallow Water Equations (SWE), which
is justified because the wavelength of a typical tsunami
is usually much larger than water depth so that the
frequency dispersion can be ignored. Because of the
necessity of quickly producing numerical results for
tsunami early warning system, SWE-based models
usually adopt explicit finite difference schemes (c.g., Liu
et al,, 1995}, On the other hand, tsunami propagation
models based on Boussinesq-type (BT) equations are
capable of considering frequency dispersive effects from
shallow to intermediate water, However, because of the
appearance of higher order terms associated with the
frequency dispersion, the algorithms for BT models call
for finer spatial and temporal resolution and higher order
numerical algorithms. Furthermore, since implicit
methods are employed in BT models significant more
computational resources and computational times are
required.

Imamura et al. (1988) (hereafter IM88) presented a
FD model for the simulation of transoceanic isunamis,
which solves the Linear Shallow Water Equations
(LSWE) using the explicit leap-frog scheme. The
frequency dispersion terms neglected in the LSWE are
taken into account by utilizing the numerical dispersion
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inherent in the leap-frog FD scheme. This is done by
choosing the grid size and time step according to a
specified criterion. However, the frequency dispersion
effects obliquely to the principle axes of the
computational domain were not property represented in
the original algorithm. Cho (1995) (hereafter CH95)
improved upon IMS88's numerical algorithm so that
frequency dispersion effects in ali directions of tsunami
propagation are correctly included. Consequently, the
numerical algorithm actually produces numerical resuls
satisfying the traditional Boussinesq equations in a
constant water depth.

When the frequency dispersion is important in
simulating tsunami propagation over a varying water
depth, the frequency dispersion effects need to be
carcfully considered at every grid point in the entire
computational domain. Thus, following the framework
of IM88 and CH93, the grid size needs to be locally
adjusted according to the time step and the tocal water
depth, which makes the implementation of these
algorithms somewhat difficult. Yoon (2002) developed a
new FD scheme that satisfies the leocal frequency
dispersion requircment for a varying water depth while a
uniform grid system is still employed. In Yoon's methed
a hidden moving grid system determined locally from
the condition suggested by IMS88 is introduced. The
physical variables associated with the hidden moving
grid system are obtained by interpolating the variables
assigned on the actual uniform grid points. Yoon (2002}
demenstrated that this scheme provides significant



improvements on the frequency dispersion cffects
compared to those of IM&8 and CH93

More recently, Yoon et al. (2007) developed
another scheme in which the lincarized BT equations are
resolved with an explicit FD meghod. The resulting
numerical dispersion is again used to improve the
physical trequency dispersion. We note that in Yoon et
al. (2007) the BT equations were combined into a wave
equation in terms of the free surface displacement. A
finite element {FE) wersion of this model is also
available in Yoon et al. (2008). Since their models are
developed based on linearized Boussinesq equations and
the variation of water depth is also taken inte account,
they show good performance for dispersive waves over
variable water depth and the computational efficiency is
very high, However, their models are only applicable for
linear waves, As tsunamis shoal onto a continental shelf,
nonlinearity gradually plays a significant rele in the
transformation. Linear model is no longer useful.
Maoreover, since only free surface elevations are solved
from the models by Yoon et al. (2007, 2008) and the
velocity field must be solved separately, the estimation
of the computational efficiency is not neeessarily
conservative.

In this paper, a modified leap-frog FD method is
proposed to solve the Nonlinear Shaliow Water
Equations (NSWE) over a slowly varying water depth.
Adopting the idea of a moving hidden grid system
suggested by Yoon (2002), the numerical dispersion is
manipulated to recover the physical frequency dispersion
neglected in the NSWE. In the new algorithm, the
numerical errors generated by discretizing the nonlinear
terms are eliminated by adding correction terms to the
original leap-frog FD scheme so that the numerical
dispersion can still be used to recover the physical
dispersion in the classical Boussinesq equations. Several
numerical tests are carried out to show that the proposed
algorithm can accurately simulate evolution of weakly
nonlingar waves over a constant or slowly varying water
depth. Most importantly, the proposed model still adopts
explicit schemes and has a2 much higher computational
efficiency than existing BT models.

2. Governing Equations

The depth-integrated Boussinesq equations over a
varying water depth can be writtenn the following form
(CH95):
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where P and @ are the volume flux in the x and y
direction, respectively and #7 is the free surface
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displacement. Two small parameters, O and £,

p
and  p=-t, @)

0

denote the nonlinearity and freguency dispersion,
respectively, In the Boussinesq approximation both
effects of nonlinearity and frequency dispersion are
cqually weak. The right-hand side of thc momentum
equations, {(2) and (3), represents the frequency

dispersion, in which the terms associated with 274" /2
reflect the effects of varying water depth.

When the frequency dispersion effects are ignored
( x=0), the right-hand side of the above momentum
equations, (2) and (3), are neglected. The resulting
equations are the NSWE.
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where U=P /H V=0 /Hand W =(POY/H . For
most of transoceanic tsunamis, wave amplitudes are
small compared to water depth and the nontinearity, O
can be neglected. Dropping the nonlinear terms {6) and
(7), the NSWE is reduced to the LSWE.

3. Numerical Scheme



IMER and CHY5 introduced an algorithm using the
modified leap-frog FD scheme to discretize the LSWE
so that inberent numerical dispersion errors are
manipulated to mimic the physical frequency dispersion
effects for tsunamis propagating over a constant water
depth. To achieve this, the following condition invelving
the grid size ( Ax ), time step (A7) and water depth
needs to be satisfied:

Ax =\ 40" + gh(ArY’

Yoon {2002) extended this approach to include the
effects of slowly varying water depth. Clearly, from (8)
the grid size has to be varying according to local water
depth, making the direct implementation problematic.
Yoon propesed an elegant way te delineate this problem,
Besides a fixed uniform computational grid system in
which the goveming equations are discretized, a local
(moving) hidden grid system is then introduced whose
grid size is determined by the local water depth using the
condition (8). Therefore, the tocal numerical dispersion
can be adjusted to locally mimic physical dispersion.

In our present model, Yoon's approach is extended
for solving the NSWE over slowly varying water depth
are given as follows:
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where the subscripts £, B, U, and L represent forward,
backward, upper and lower grid points on the hidden
grid system associated with the grid point (J, /) on the
fixed uniform grid system for the continuity equation (9),
(i+1/72, j) for the momentum equation (10} in x-direction
and (i, j+1/2) for the momentum equation (f1} in 3~
direction, respectively. We reiterate that A x and Ay are
the size of fixed uniform grids in x- and y- direction and

Ax = Ay . Ax" denotes the size of hidden grids and
determined by (8) and a = Ax, / Ax.

In the following section, a numerical test is
performed to investigate the validity and application
range of the proposed numerical algorithm.

A Numerical Example

Yoon ct al. (2007) preseated numerical simuiations
of the transformation of tsunami waves over a
submerged shoal based on their own model and a
Boussinesq model, FUNWAVE (Wei and Kirby, 1993).
The same numerical experiment is carried out here and
the present results arc compared with those of Yoon et al.

The numerical domain is 15300 km loag and 500 km
wide with a constant water depth of 1500 m. The
submerged circular shoal is located at (xq, yg) = {500km,
250km} as shown in Figure 1 and the water depth over
the shoal is given as

HP=1500, r=R; Mr)=15000" 1 ), {r)=500, r<R (12)

where r = \/(x - .wru}1 +(y-y) and R =150km and

R, = 86.6km , which yields a slope roughly of 1/64. Four

gauges are deployed to record the time histories of water
surface elevations. Gage | and 3 are located on the slope
where water depth is 1000 m. Gage 2 is located at the
center of shelf top and Gage 4 is located at (750km,
0.0km}. At both ends of the numerical domain, sponge
layer is deployed to avoid wave reflection. Vertical wal}
is implemented along lateral boundaries.
Along x = 0.0, the initial condition is given as

Axt=0)=a,e™ ™, Plx=0)=00, O(r,r=0)=00 (i3)

where ap= 2.0m and x,=7500m, This is a Gaussian
hump uniform in y-direction. The characteristic length
scale of this Gaussian profile is about 15km, which
yields g = 0.1. Considering the extremely small ratio of
the amplitude to water depth, o= 0.0013 , the
nonlinearity is neglected during simulation,



In the numerical simulation, the grid size and time
step are sclected to be the same as those used by Yoon el
ab. (2007), which are Ax = 2000m and Ar =4s . The
numerical results shows a good agreement with those by
Yoon et al. at all four gauge locations (see Figures 2 and
33 Atthough the present numerical results become
slightly more dispersive than those obtained by Yoon ct
al. (2007) as waves propagate further away from the
source, the first several waves, which are crucially
important in determining tsunami runup and inundation.
match perfectly with those of the Boussinesq model
(FUNWAVE) and Yoon ct al.'s (2007},

Concluding remarks

in this paper, a modified leap-frog finite difference
scheme is developed to solve nonlinear shallow water
equations. By properly adjusting the grid size in terms of
local water depth and time step size, the numerical
dispersion errors inherent in the explicit leap-frog finite
difference scheme is manipulated to recover the physical
frequency dispersion. The new model is able to simulate
weakly nonlincar and  weakly dispersive  waves
propagating over a slowly varying water depth.

The numerical example presented in this paper
shows that, for both long wave propagation over a loag
distance and wave shoaling onto a miid slope, numerical
results of the present moedel are in very good agreement
with those from Boussinesq models. This greatly extends
the application range of traditional Nonlinear Shallow
Water Equations from the shallow water to intermediate
water depth. The biggest advantage of the present model
is its cfficiency. Simple examples of solitary wave
propagating over a constant depth or a uniform slope, the
CPU times required by the Boussinesq equation: models
are two to three orders of magnitudes of that required by
the present model. Apparently, using the leap-frog
explicit scheme, the present model can be used to sobve a
large computational domain.
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Figure 1 A sketch of the computational domain
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Figure2 Comparisons of numerical results obtained from
the present model and those by Yoon et al. (2007).

The dotted lines denote the numerical results from the
present model; the solid lines are the numerical results of
FUNWAVE (Yoon et al., 2007) and the dash-dot lines
are Yoon's results (2007). And the sub-plot (a) and (b)
show the comparisens at Gage | and 2, respectively.
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Figure 3 Comparisons of numerical results obtained
from the present model and those by Yeon et al. (2007)
for Gage 3 (¢) and Gage 4 (d) , respectively.
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