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Abstract

The tide wave data of Chenggong harbor at Taitung, Taiwan, which covers the range from August
1%, 2002 to July 31th , 2004, is examined by a new time frequency transform. The transform involves two
steps: one evaluates the Fourier sine spectrum; and the other imposes a window to the spectrum at a given
frequency whose inverse Fourier transform is corresponding to the real part of the spectrogram. The
frequencies and amplitudes of dominant modes are approXimately equal to that evaluated by the harmonic
analysis except some scatterings on the spectral domain. From the spectrogram, variations of both
amplitude and frequency of dominant tide waves are clearly inspected. For those waves closely related to
the moon period, which have the wavelength of 7, 14, 28, 42, and 56 days, the non-stationary frequency
and amplitude variations are captured. Nonlinear behaviors are also founded in the waves with 6 and 8
hours wavelength. These waves are referved to the reflection of Kurosio current from the continental shelf
of Eurasian plate. These new information show that the new spectrogram has the potential to start a new

study upon the ocean long waves.
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1. Introduction

For time series data, as noted by Farge [1], a time
frequency analyzing tool can capture the variation of
spectrum. with respect to time which reflects the
involved details and mechanism(s). Therefore,
spectrograms generated by time frequency transforms,
such as short time Fourier, Gabor and wavelet
transforms, are widely applied [2]. Although
distributions of original Wigner-Ville distribution and
Cohen class are also successful transforms [2,3], the
related methodology will go beyond the scope  of this
study and it is not  discussed here. :

In several previous studies [4-7], it is seen that both
Gabor and continuous wavelet (Morlet) transforms give
detailed information by embedding a window to weight
the data string on the time domain. These studies also
show that a window on the time domain results in a
band-pass filiered spectrum, Based on this fact, a new
time frequency transformation was proposed in Ref[8].
In this study, the application of this transform to do the
wave decomposition of the tide wave is shown.

2. Theoretical Development

2.1 Intrinsic Error of the Discrete Fourier
Expansion
From the functional analysis, it is well known that
to represent a data string, one can employ either strong
or weak projection. Consider a discrete data string, the

dimensions of the complete function space is finite.
Suppose that the eigen functions space is complete. The
error of a strong eigen expansion formula at every point
must be zero. On the other hand, the error of a weak
eigen function expansion formula will be nonzero at
least at one point. A typical weak projection example is
the discrete Fourier expansion. In fact, because of the
periodic properties of sine and cosine function, a strong
projection via the Fourier expansion is achieved only i’
all the periodic conditions of 3, y¥ D are
satisfied, where p is the dependent variables and N

is the data size. In other words, all the Fourier
coefficients contain certain error because of the
non-periodic properties of the data string. Moreover,
the non-sinusoidal part of a data string will introduce
the well known Direct Current (DC) contamination. As
a consequence, the minor modes may be secriously
faded and dominant modes may be slight disterted.

It is well known that the Fourier expansion is an
approximation in the least squares sense which is a
non-robust estimation as mentioned in Ref.[9]. For
example, suppose that a data string y, is approximated

by a function f(x,.,ao,a,,...,aM) ’ where Aoy sy are
parameters {0 minimize a  error  measure
function p(z) Where  z = [y,~ (x,dgay )l 304
o is the error deviation parameter. From the

probability point of view, the minimization procedure is
correspond- ing to
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in which the variation dp(z)/dz is the weight of the

problem. A least square method assumes that the errors
are distributed as the Gaussian normal distribution

Prob{ y,~f(s.p) ) mexp (-} 2 L5y )

Consequently, p(z)=z°/2 and the weightis z such

that a least square method uses a larger and larger
weight as the error increases. It indicates that the
resulting estimation will be biased by minor or isolated
data points scattering from the main trend. In other
words, for the Fourier expansion, once the expansion
range is slightly changed or a few data points are
removed, the resulting spectrum will deviated from the
original one that can not be ignored. Therefore, most
people have the experience that different FFT version
gives different spectrum but their main features are
similar to each other.
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2.2 A New Spectrogram Generator
Under the assumption that time series data has no

discontinvous component, the procedure of generating a

new spectrogram involves the following steps [8].

1. Apply the iterative filter of Ref.[10] to remove the
data’s non-sinusoidal part whose contribution to
the spectrum is also named as the Direct Current
(DC) contamination,

2. Use the strategy of Ref[11] to generate a Fourier
sine spectrum whose spectrum error is small,

3. Add a window to get a band-pass limited spectram
for a given frequency. The corresponding real part
of transform is the inverse FFT.

4. The real part’s Hilbert transform is the correspond-
ing amplitude.

5. Plot the two-dimensional spectrogram,

For the sake of completeness, the theoretical content of

Ref.[8] is briefly restated below.

2.3, Iterative Filter with Diffusive Property [10]
Consider a data string, ¥p ....yy and expand it

as follows.

YO = T by ey ) expli2at! Ay (3)

If the Gaussian smoothing method is employed o
smooth the data, it can be shown numerically that it is a
diffusive smoothing. But the transition zone of this
low-pass filter is too wide. In order to narrow down the
transition zone, an iterative filter based on Gaussian
smoothing was developed in Ref[10]. The iteration
procedure smoothes the remaining high frequency part
repeatedly, If the iteration stops at the rm — th step, the
final high frequency part y'(¢) is the desired short

wave part.  The final smooth part is
y@)y=yO)-y'@

Z 0[1 — A, 1" (b, — je,)expli2atf A,] .
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Like the Gausssian smoothing method, the iterative
filter is also diffusive. Supposing & data string has a
frequency gap in the range of 43 <i<.J4 within
which all modes are not important, both mand o can
be solved by the simultaneous eguations with factor

[1- A(e / 2)]™ equal to almost 0 and 1, respectively, If

there is no such gap, the above procedure can be
considered as initial work. By extracting the data

associated with those modes with i<, from the

spectrum of the remaining high frequency part, a sharp
filter cutting at 4, is obtained [12-14].

2.4, Spectrum with small error

In Ref.[4-8,11-12], the above mentioned iterative
filter is employed to remove the non-sinusoidal and low
frequency parts. For the remaining high frequency part,
the simple strategy of FFT [11] generates a Fourier sine
spectrum with very small spectrum and DC errors.
The strategy includes: find zeros at two ends; remove
data beyond zeros; redistribute data so that the total
number of points is equal to an integer power of 2; do
an odd funciion mapping to ensure periodicity; follow,
finally, with an FFT algorithm. Since the resulting
spectrum employs all the necessary periodic conditions
and is referred to as a strong projection techuique.

2.5. New Time Frequency Transform [8)

Assume that the high frequency part, y'(¢), is
expressed in the form of Eq.(1). Any time-frequency
transform [1-8] can be applied to generate a
spectrogram without DC error. For example, the Gabor
transform gives [4]

G(f,0)=1iVa [° y (e d/m /=g =0"ad) g,
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where a is the scale function, The Gaussian window
imposed on the time domain clearly results in imposing
a corresponding Gaussian window on the spectrum
domain. The Morlet transform and all enhanced Gabor
and Morlet transforms have similar mappings of
windows between time and frequency domains [5-8].

Based on this fact, a Gaussian window is imposed
on the spectrum of y'(f) so that a band-passed data

string corresponding to  f}, can be obtained [8]
2 (@)= B0 (b, — o, )el e 2D (6)

where the last exponential term is the Gaussian window
with window size ¢. Now y,(f)is considered as the

VAT (5)

mode or real part corresponding to f,,. The amplitude

of y,(f) is evaluated either by the original [10] or

modified Hilbert transform [8). The Hilbert transform is
fast but has the penalty of convelution error due to end
effect. When the modified Hilbert transform is
employed, the spectrum, by the proper feeding of 0’s to

the function, say e/2*/+ /¢, is unavailable now so that



it should be done on time domain. Finally, the
spectrogram is obtained by scanning all frequencies.
Along a f=f, line, the real part of the

spectrogram is a mode with a Gaussain window size
characterized by parameter ¢ on spectrum. For the
problems of turbulent flow data, modes generated by
different values of ¢ correspond to different physical
meanings and should be carefully addressed.

3. Results and Discussions

The test case is the tide data of Chenggong harbor
in Taitung, Taiwan. The sampling period covers from
Aug. 1%, 2002 to July 31th, 2004 with a sampling rate
10 points per hour. Since there are several missing data
period, the data repairing technique of Ref [15] is
employed to repair the data and the data reduction is
made to pick ane from every 10 data points. Figures 1
shows the original and smooth part (including the
non-sinusoidal part). The smooth part shows that the
water level rises in summer time and drops in winter
time. There was a distinct wavelike change between
September 2003 and February 2004, probably due to a
significant fyphoon passed nearby in early September
and strong ¢lod waves occurred in the afterward winter.
Figures 2a through 2¢ are the spectrutm estimated by the
Fourier transform with (referred as Fourier 1 in Table-1)}
and without (referred as Fourier 2) the smooth part and
the Fourier sine spectrum, respectively. The main
features of these figures are similar to each other except
that the smooth part introduces a DC contamination to
Fig.la. However, the Fourier spectrum of the high
frequency part is slightly different from the Fourier sine
spectrrn because the periodic conditions of
¥',.,y& " can not be exactly satisfied. Table 1 shows

that comparison of three dominant modes between
these spectrums and result of the harmonic analysis. For
the M2 wave, the result of the Fourier transform with
the smooth part is the closest one with respect to that of
the harmonic analysis. For §2 and K2 waves, results of
the Fourier transform without the smooth part are the
closest approaches to that of the harmonic analysis.
Note that these coincided cases resolve the dominant
waves by single modes. As to the rest cases, results of
the Fourier and Fourier sine spectrums use more than
one mode to resolve dominant modes. In fact, the
scattering of the spectrum retlects the corresponding
variations of amplitude and frequency on the time
domain. The following spectrograms will confirm
variations of these modes. Note that the scatiering
among these Fourier expansion is principally induced
by the non-robustness of the least squates method.

Figure 3a to 3b are spectrograms of the daily tide
wave components generated by the proposed time
frequency transform, Morlet, and Gabor transforms,
respeciively, where the Gabor transform employs the
Gaussian window width of =60 days and is almost
the best result The main features of three figures are
similar to each other, but Fig.3a achicves the best

information resolution. Obviously, all modes have the
amplitude and frequency variations. There are apparent
signals shown in day 200-400, could be related to
frequent typhoons occurred in March-September 2003.

4. Conclusions

The new Fourier sine spectrum and spectrogram
are successively employed to study the tide wave data
in a two years period of the Chenggong harbor of
Taitung, Taiwan. From the resulting spectrum and
spectrogram, many new information, which can not be
provided by current methods, are grasped. Many further
studies upon this and related issues are on the way.
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TABLE®* Dominant Medes Comparison
Harmonic  Fourier 1  Fourier 2 Fourier sine
Analysis

M2 freq.. 0.080511  0.080511 0.080477 0.080477
Amp. (04876 0.470578 0.22302 0.089492
freq. 0.080534  0.080505
anip. 0363446  (.41759
freq. 0.0805%1  0.080534
armp. 0.097440  0.158714

82 freq 0083333 0.083305 0.083329  0.083300
amp. 02018 0.128476 . 0.195147  0.023453
freq. 0.083362 0.083329
amp. 0.126192 0.192099
freq. 0.083357
amp. 0021181

K2 freq.  .08356149 0.083533 (.083557 0.083500
amp. .0533 0.044122 0.059294 0.012998
freq. 0.083590 0.083528
amp. 0.0368983 0.026761
freq. 0.083557
amp. 0.030251
freq. 0.083585
amp. 0.041296

Raw data 8 non-sinusoidal part
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days
Fig.l The raw and non-sinusoidal data of Chenggong harbor’s

tide wave: thin line is the raw data and heavy line is the
non-sinusoidal part.
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Fig.2 The spectrum of the tide wave data: (a) Fourier
spectrum with the non-sinusoidal part; (b) Fourier
spectrum without the non-sinusoidal part; and (c) Fourier
sine spectrum without the non-sinusoidal part.
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(b)

Cheng-Kung Harbor/Taitung, aug. 1st, 02 - Jul. 31th, 04
21.4-29.3, BIJ |II:'IBS, Gahar transform, sigma = 40 days
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Fig.3 The spectrogram plot around the 24 hour tide wave: (a)
generated by the proposed transform; (b) by the Gabor
with the best window width of a = 40 days; and (c) by
the Morlet transform.
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