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Abstract

The National Fire Danger Rating System (NFDRS}) indices deduced from RSM 50-km I-day simulations
from January 1998 through December 2003 are used in conjunction with a probability model to determine the
expected number of fire occurrences and large fires. The RSM simulation and forecasts are ongoing
experimental products from the Experimental Climate Prediction Center (ECPC) at Scripps Institution of
Oceanography. The probability model uses non-parametric logistic regression with spline functions for
evaluating relationships between covariates and probabilities of fires. The 1-day RSM simulated NFDRS
indices and surface meteorological variables are used with the probability model to assess the skill of the
system in determining the observed fire severity. The Firc Weather Index (FWI) which was derived from
weather variables only, along with NFDRS indices of the Keetch-Byram Drought Index (KBDI) and Energy
Release (ER), were found te produce more significant mutual information of the observed big fire events than
all other stand-alone weather variables. These selected indices, in addition to historical fire information, were
used in the probability model to determine the expected number of fire events. It was shown that the
probability model using combined fire danger indices outperformed the one with historic information only.
Geographical maps of wildland fire probability were subsequently produced and reasonably well matched the
actual fire events. This method paves a feasible way to use climate forecast output from a dynamical

meteorological model with a statistical model to predict the probability of wildland fire severity.

L. Introduction

The US Forest Service (USFS) National Fire
Danger Rating System (NFDRS) (Deeming ef al. 1977)
reflects the conceived fire behavior and poiential from
the effects of terrain, weather and fuel condition from
fuel models. Although the system was originally
developed for the main purpose of firefighter safety,
many wildland fire management agencies also use it
for quantification of risk element, staffing level,
appropriate suppression response, and strategic
decision (NWCG Fire Weather Working Team 2005).
The reliability and integrity of the system, however,
are hampered by difficulties arising from the use of
non-stationary, insufficient spatial coverage, and non-
standardized data communication and archiving of
weather station data. Using global or regional scale
weather analysis as weather input is an effective
alternative to partially overcome the aforementioned
shortcomings of the current NFDRS monitoring
system. The weather model can provide a thorough and
dynamically consistent data set with ample spatial
coverage to the NFDRS, It also has potential value for
providing predictive NFDRS with a lead time of a
season or longer,

Recently, Roads et al. (2005) evaluated
experimental forecasts of NFDRS indices at weekly to
seasonal scale using a meteorological model as
weather input. They showed that these indices can be
well predicted at weekly time scales when validated
against the validation indices deduced from the
weather model 1-day simulation. How these model-
deduced indices are associated with observed fire
characteristics such as fire counts and acres burned
remains unclear. As demonstrated in Roads et al.
(2005), there is only a weak relationship between their
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validation indices and the observed fire counts/acres
burned. In this study, a probability model appreach
(Brillinger et al., 2003; Preisler and Westerling 2005)
is used to assess the skill of the model-deduced
monthly fire danger variables in estimating large fire
events,

IL Fire danger and fire variables

The fire danger variables in this study were adapted
from the meteorological forecasting system developed
at the Experimental Climate Prediction Center (ECPC)
in La Jolla (Roads ef al, 2005). The model system uses
operational daily 00 UTC analyses from the NCEP
Global Data Assimilation (GDAS), which is used for
NCEP’s global extended range weather forecast, as
initial condition for regional forecast up to 16 weeks
lead time. _

The regional spectral model (RSM) used in this
study was originally’ developed at NCEP (Juang and
Kanamitsu 1994; see also Juang ef al. 1997). The RSM
is a regional extension of the global spectral model
(GSM; Kalnay et al 1996). The RSM provides an
almost seamless fransition from the GSM to the higher
resolution region of interest (Chen et @l 1999) and
thus avoids a common regional model problem when
using incompatible physics between the driving global
model and the nested regional model (Chen 2001). The
description of the RSM and the model setup used in
this study can be found in Roads et al. (2003).

Global analyses from January I, 1998 through
December 31, 2003 were used to initialize and force at
the lateral boundary of the regional spectral model
(RSM) for one day integration for each imitial day.
Horizontal grid space of 60 km was used in RSM. The
1-day forecasted surface weather variables, including
temperature, 2-meter relative humidity (R2H) and



wind speed from the model, top 10-cm soil moisture
contest {SMC1) along with observed precipitation,
fuels and slope were the input for the NFDRS indices
computation {(Burgan 1988). The major difference of
our NFDRS calculation from the standard one is the
use of model weather output instead of weather station
observations, Interested readers can refer to Roads ef
al. (2005) and Burgan (1988) for a more detailed
description. Since not all standard NFDRS indices ate
useful to fire managers, we chose to examine only
spread component (SC), energy release component
(ER), burning index (BI), ignition component (IC) and
Keetch-Byram (KB) drought component. In addition,
fire weather index (FWI), 2-meter relative humidity
(R2H), and the first 10 cm of soil moisture content
(SMC1) from the meteorological model were also
included to contrast the skill from NFDRS indices.

FWI (Fosberg 1978; Fujioka and Tsou 1985) is an
index derived only from weather variables of
temperature, relative humidity and wind speed, by
assuming constant grass fuel and equilibrium moisture
content as a function of weather variables. This index
is not part of the NFDRS and requires only
instantaneous value from the weather model. Due to its
easy application, FWI has been used for seasonal fire
danger forecasting to provide a first look at global
wildfire condition (Roads er al 1995). As will be
shown, despite its absent use of surface fuel
information, FWT offers significant skill in explaining
fire occurrence.

This work relied on fire history data sets compiled
from Federal land management agency fire reports.
Westerling et al. (2003) compiled a gridded one-degtee
Lat/Lon data set of monthly fire starts and acres burned
from approximately 300 thousand fires reported by the
USDA. Forest Service and the USDI’s Bureau’s of
Land Management and Indian Affairs and the National
Park. Service for 1980-2003. Since we have
meteorological model derived fire danger indices from
January 1998 through December 2004, we will only
use the fire data for the same period.

I11. Statistical Methods
IiLa. Probability models

We used logistic regression with piece-wise
polynomials (Hastic et al. 2001, Preisler and
Westerling 2005) to estimate two probabilities of fire
risk. The probability of ‘ignition’ was defined as the
probability of at least one fire occurring in a given one-
degree grid cell during a given month. The probability
of ‘spread’ was defined as the conditional probability
of a burn area greater than 400 ha given at least one
fire occurrence in the one-degree cell during a given
month. The product of these two probabilities, namely,
the probability that an area greater than some specified
value will burn in a given grid cell during a given
month of a given year, was used as a metric for fire
danger.- Hereafter, for ease of understanding, we will
use the terms “fire occurrence” and “large fire” for
“ignition” and “spread” respectively.

The logistic regression line used to estimate the
probabilities of fire occurrence and large fire is
specified in the following equation

(1]

logit{ p, } = B, + g (len, lat,) + g, (month,) + Z}gm,_, (X )

where the subscript, v, indicates the one-degree by
one-month voxel; p is either the probability of ignition
or probability of large fire; (lon, lat) are the longitude
and latitude of the mid point of the grid cell; X, are
explanatory fire weather and fire danger variables. The
terms gf) are semi-parametric smooth functions (Hastie
et al. 2001) such as piecewise polynomials, periodic
splines (for estimating month-in-year effect) and thin
plate splines (for estimating the spatial surface as a
function of lon and laf). Estimation was done with the
R statistical package (R Development Core Team,
2004). Further details of the preceding probability risk
model are found in Brillinger et al. {2003), Preisler et
al. (2004), Preisler and Benoit (2004) and Preisler and
Westerling (2005).

We used the Mutual Information (MI) statistic to
study the sirength of the statistical dependencies
between explanatory variables (e.g. a fire danger index)
and the probabilities of fire risk. In particular, we used
the MI statistic to select the indices, or combination of
indices, with the most ‘information’ regarding the
probability of fire risk. Details of the MI statistic are
given in Preisler and Benoit (2004). Three statistical
models with logit line were compared using the MI
statistic, they are 1) historic model (H), 2) fire danger
model (FDI}, and 3) combined model (C). H model
included all terms except the fire and weather variables
in [1]. With this model each cell has a different
probability for each location and month of the year but
the probabilities do not change from year to year. FDI
model used one of the fire and weather variables that
was excluded in H. C mode! applied all term included
all weather and fire indices as selected by the MI
criterion,

"The final models, with the selected set of indices,
are next used to estimate the probability of fire
oceurrence, p;, and the conditional probability of large
fire, p,. Finally, the probability of a larger fire event is
defined by multiplying the two probabilities, namely,
zT=p i X P 5.

ITLb. Accessing model skills

We assessed the overall goodness-of-fit of the final
selected model by grouping together all cells with
similar estimated probabilities (within 3% of each
other) and comparing the observed fraction of
responses in each group with the corresponding
estimated probability of response. Response here is
defined as a voxel with a large fire event. Estimated
probabilities for each voxel were produced using cross-
validation. Specifically, estimations for a given year
were done by using the model parameters from all
other years except the year being evalnated.

The skill of the model in estimating the total
number of voxels per month with large fire event was
assessed by comparing observed numbers of monthly
totals for each year with the deduced 50™ and 95™
percentiles. The 95" percentile includes both natural



variation (Poisson) and variation due to the error in the
estimated model parameters.

I1L.c. Maps of Odds Relative to Norm

The methods described here may be used to
produce maps showing departures from ‘normal’
conditions. In this study the ‘norm’ is the estimated
probability of a large fire event produced by using the
historic model (H). Since our study was based on six
years of data {1998-2003) the ‘norm’ reflects average
conditions during these particular six years. Maps of
estimated departure from the norm were produced
using the odds ratio statistic, The rules used to produce
the maps of odds were as follows: let 7, be the

estimated probability of a large fire in a given voxel
using the combined model C described above; and
7, 18 the estimated probability from the historic model

H. Let & =log(7) be the logarithm of the estimated odds
ratio, § =7, /(1 - )+ £, [(1- #,) , i.e. the logarithm of the
odds relative to historic values. Risk maps were
produced using the rules:

Lower than historic ¥ 6<~6

Normal if -&sdsé

b o [2]
if o<f#<log3)+o

it 8>log3)+é

where & is the standard deviation from the historic
odds. A voxel is designated as exireme if the odds ratio
is greater than 3, i.e., the odds are at least three times
as large as the historic odds,

Higher than historic

Extreme

IV. Results

Mutual information statistics (MI) were estimated
for various probability models using fire occurrence
and large fire data described above. The indices FWI
and 2-meter relative humidity (R2M) indicated the
highest relative increase in strength of dependence
with fire occurrence when added independently to the
historic (H) model. The indices with the highest
relative increase in strength of dependence with the
conditional probability of large fire were KBDI, FWI,
IC and R2H. R2H is one of the input variables for
computing FWI, hence the correlation between FWI
and R2H was very high (r = -0.92). Because FWI was
found to show dependence with both probabilities of
fire occurrence and large fire, in the next stage of
model development we started with the FDI model that
included FWI. Next we developed combined models
(C) by adding the rest of the indices, one at a time. The
order in which the indices were added to the
probability model was such that those with the smallest
correlation with FWI were added first. We should
point out that correlation reflects only the lingar
relationship between two variables. Since our
probability model as well as the relationship between
FW1 and other variables is not entirely linear, a
significant increase in MI by adding another index,
which has high linear correlation with FWI, might be
still possible.

The progressively increased M1 is shown in Figure
1. Note that the increase of MI after the first few
indices was relatively negligible, the final combined
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model (C) for the probability of fire occurrence
included only the indices FWI, ER and KBDI in
addition to location and month. The final combined
model for the conditional probability of large fire
included FWI, ER, KBDI and R2H in addition to
location and month. For its relatively non-negligible
contribution to the increase of collective MI, the R2H
was one of the variables empirically selected for the
conditional probability of large fire even thought it was
highly correlaied with FWI. R2H is basically inversely
proportional to FWI when R2H is high. However this
linear relationship breaks down during dry and high
FWI weather. Obviously wind is playing an even more
critical role under the circumstances.

To demonstrate the skill of estimating fire
occurrence, Figure 2 shows the observed fraction of
large fire events vs. the estimated probabilities from
histeric (H) and combined (C) models. The observed
fraction is the ratio of all voxels with the same
estimated probability to those with actual large fire
observed. The scattered point of observed fractions
and estimaied probabilities of large fire events were
mostly within the expected point-wise 95% confidence
bounds, which are represented by the two dashed lines,
for both the historic model (F) and the model with
combined indices (C). The confidence bounds increase
with increasing probabilitics due to the small number
of voxels in the high probability groupings.
Statistically, the overall Chi-square goodness-of-fit
statistic dropped from 36.8 (P-value = 0.0008) for
model H to 19.2 (P-value = 0.51) for model C.
Moreover the increase in the estimated probability
within the range of observed conditions ranged
between 0 — (.72 in the combined model as opposed to
0 - 0.56 in the historic model. The latter implies that by
using values of weather indices we were able to
identify the probabilities of large fire events as high as
72%. Therefore it is shown that the histeric model
lacks the ability to project high probability for large
fire events so that the scattered distribution skews to
the upper side of the diagonal line. The combined
model, however, gives significant improvement by
showing comparable probabilities against those
observed within the 95% confidence bounds.

One of the possible outputs of the probability
model are maps of departure from the ‘norm’, as given
by estimated odds ratios relative to historic (see [2]).
Maps of odds ratic are particularly useful when
accompanied by probabilities of large fire events. For
example, the estimaied odds of a large fire event
appeared to be higher than the norm in the
southwestern  states in May 2002 and in the
northwestern states in August 2003 (Figure 3 left
panels). Although the overall estimated probabilities
for May 2002 in the Southwest (Figure 3 top right
panel) were low (<20%), we still expected and
observed a few large fire events. On the other hand, in
August 2003 the estimated norms for the northwestern
states were higher than the norm and because the
probabilities were also high (mostly > 50%) we did
observe many large fire events.



Howewver, the most useful application of probability
model is to estimate the total number of large fire
events for a given month over a given area by adding
up the probability at all cells. If the period of the
anglysis data used in the probability model was long
enough, this estimate could be applied over a small
region for fire management use. Here we show the
monthly estimated as well as the observed large fire
events in Figure 4 for the northwestern and
southwestern states separated by 40N. The estimated
numbers are plotted with 50" and 90" percentiles in
solid curves. The observed numbers are marked with
dots. The 50" percentile estimates from historic model
are also given in grey lines. Historically, the Southwest
lags the Northwest by one month reaching the peak of
large fire occurrence during fire season. Over the
northwestern region, a higher than normal number of
big fire evenis were observed and hence well estimated
for years 2000 and 2003, except for 2001 summer. In
the southwestern region, the inter-annual variations of
fire events were not as apparent. However, summer of
2002 shows an observed early peak in June, compared
to the historical model, and was well captured in the
estimates. The higher and lower odds relative to the
historic model over the northwestern and southwestern
states for May 2002 and August 2003 respectively can
also be found in the time series. Overall, all estimates
were distributed around the 50 percentile estimates and
definitely under the 90 percentile curves.

V. Summary and Discussion

A statistical method of estimating big wildland fire
events has been applied to the monthly mean fire
danger indices of the numerical weather prediction
products from the Experimental Climate Prediction
Center (Roads ¢t al. 2005). Logistic regression with
piece-wise polynomials {Hastie et al. 2001, Preisler
and Westerling 2005) was used in the statistical model.
With the mutual information analysis, it is found that
FWI, KBDI, ER, and R2H explained most of the
variability in fire occurrences and big fire events.
These variables were subsequently chosen to construct
the combined probability model for estimating the
probability of the big fire events.

The mutual information is not only practical for
selecting variables and producing probability maps of
fire risk, it is also useful in assessing the adequacy of
the fire danger indices in describing the observed
wildland fire events at temporal scale longer than a few
days. Since the NFDRS is probably designed to
support fire fighting tactics, some of the indices, such
as SC, BI and IC, are sensitive to short term variation
of weather components, especially wind speed. These
indices, however, might lose their characteristics when
a long term average is taken. Therefore it is not too
surprising to see that these indices did not add
information to those slow varying indices, such as KB
and ER, in describing observed big fire events. What is
surprising is that FWI, an index determined by weather
variables only, demonstrates a significant contribution
to the mutual information statistics. It is not clear
whether the simplified relationship of weather

variables to the index or the assumed constant grass-
type surface fuel preserved the fire characteristic at
monthly scale. Further analysis is required.

It is promising that combinations of fire danger
indices have good skills in estimating the probability
of large fire events at monthly scale. The combined
indices model out-performed the historic model, in
which neither weather variable nor fire danger index
was used in producing reasonable probability,
especially at high probability cases. Furthermore, these
estimated probabilities at each cell can be developed
further into monthly anomaly maps for fire danger,
which has been shown to be in good agreement with
the observed fire events.

While the traditional anomaly maps are useful to
fire managers in identifying high fire risk areas, the
most useful application might be the ability to assess
the total number of big fire event against historic
estimates over a region in a probabilistic manner.
Roads et al. (2005) showed that although the
meteorological model predicted fire damger indices
quite well even at seasonal time scale, the association
between the observed fire occurrence/acre-burn and the
“observed” fire danger indices were poor, let alone to
the predicted one. Part of the reason could be that fire
events have such a nondeterministic nature that
straightforward point-to-point temporal correlation
evaluation is inadequate. Here we propose an
alternative to evaluate the association between the
derived fire danger indices and the observed fire
characteristics through a probabilistic framework over
a certain area. The result indicates that the estimated
numnbers of big fires within 95 and 50 percentiles agree
fairly well with those observed.

Similar analysis needs to be done with forecasted
monthly fire weather/danger indices to assess the skill
of the forecasted variables on predicting large fire
events for this method to be truly useful for fire
managers. Future work will address the skill of
predicting big fire events at different lead times at
various geographical regions. Qur current work can
only be evaluated at a regional scale as big as half the
western US due to the limitation of the coarse spatial
resolution of fire data and the short duration of the
available model derived fire danger indices. If these
two shortcomings can be overcome, we may be able to
focus over a smaller jurisdictional region so that the
prediction can be used for fire management operation.
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Figure 2: Observed fraction of large events in a given
one-degree cell against the estimated probability based
on the historic model and the combined medel. The
dashed lines are the approximate point-wise 95%
confidence bounds,
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Figure 3: Maps of odds relative to historic (left panels) and estimated probabilities (right panels) of large fire events for
two time periods. Note that higher than normal odds resulted in many large fire events in August 2003 and very few
events in May. This is consistent with the low estimated probabilities in May and high estimated probabilities in August.
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Figure 4: Observed (dots) and estimated (curves) number of one-degree cells with large fire events. Solid curves are
the 50™ percentile of the fitted distribution. Dashed curves are the upper 95" percentile of the distribution. Grey curves
are estimated 50™ percentiles of historic model. “North” and “South” are for all cells above and below 40N,
respectively.
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