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Abstract

In this study, a multivariate linear regression model is applied to predict the annual tropical cyclone (TC)
counts in the vicinity of Taiwan using large-scale climate variables available in May. The model is based on
the least absolute deviation (LAD) so that regression estimates are more resistant (i.e., not unduly influenced
by outliers) than those derived from the ordinary least square method. Through correlation analysis, five
variables, including sea surface temperature (SST), sea level pressure (SLP), precipitable water (PW),
relative vorticity in key locations of the tropical western North Pacific and CLIPER are identified as predictor
data sets. Results from cross-validation suggest that the statistical model is skillful in predicting TC activity,
with a correlation coefficient of 0.75 for the period of 1970-2003 (34 years).

1. Introduction

W. Gray pioneered the seasonal hurricane
prediction enterprise using a regression-based statistical
model called the least absolute deviation method (Gray et
al, 1992). They showed that nearly half of the
interannual variability of hurricane activity in the North
Atlantic could be predicted in advance. This is amazing
because a hurricane is a small system, and physical
mechanisms governing its formation are complicated.
Along the same line of statistical modeling, Chan et al.
(1998) developed a model to predict seasonal fyphoon
activity over the western North Pacific and the South
China Sea. When tested against a 30-yr sample through
the jackknife method, skillful forecasts are noted for a
suite of predictands (e.g., the annual number of typhoons
and the annual number of tropical storms and typhoons).
The informative results of Chan et al. (1998) are pertinent
to the vast western North Pacific basin and the South
China Sea. For a smaller geographic domain such as in
the vicinity of Taiwan, the frequency of typhoon
oceurrences may be very different from that of the basin-
wide numbers. For example, tropical cyclone counts over
the entire western North Pacific during the developing
year of the El Nifio do not differ much from the long-term
climatology, yet the genesis location during the peak and
late season of the El Nific developing year is dramatically
shifted east- and southward so fewer storms are found to
the west of 150°E (Wang and Chan, 2002; Chu, 2004).
Therefore, it has yet to be shown that new predictive
models would work for a smaller area.

In this study, we attempt to predict the number
of tropical cyclones (TCs) in a season in the vicinity of
Taiwan area on the basis of the Least Absolute Deviation
(LAD) regression method. This method has been tested
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for many years by Gray and his associates and is quite
mature. Section 2 discusses the dataset, and section 3
outlines the LAD model. In section 4, procedures for
selecting appropriate predictor variables are described.
Section 5 discusses the forecast results. A summary is
found in section 6.

2. Data and data processing

The annual tropical cyclone (tropical storms and
typhoons) series in the vicinity of Taiwan from 1970 to
2003 is obtained from the Central Weather Bureau. This
series covers an area between 21°N-26°N and 119°E-
125°E. Monthly mean sea level pressure, wind data at
850- and 200-hPa levels, relative vorticity data at the 850
hPa level, and total precipitable water over the western
North Pacific (0°-30°N) are derived from the
NCEP/NCAR reanalysis dataset (Kalnay et al., 1997;
Kistler et al., 2001). The horizontal resolution of the
reanalysis dataset is 2.5° latitude-longitude. Tropospheric
vertical wind shear is computed as the square root of the
sum of the square of the difference in zonal wind
component between 850- and 200-hPa levels and the
square of the difference in meridional wind component
between 850- and 200-hPa levels (Clark and Chu, 2002).
The monthly mean sea surface temperatures, at 2°
horizontal resolution, are taken from the NOAA Climate
Diagnostic Center in Boulder, Colorado. As our interest
is to develop a predictive model, only the May data prior
to the peak typhoon season are derived.

3. Least Absolute Deviations regression
A linear regression model can be generally
written as



y(f)=Zijj(I)+N(l‘) (1)

where y(¢) is the desired predictive variable or
x(t) for i=1..,K the

predictors and ¢, for i =1,...,,K are the corresponding

predictand, represent

regression parameters, while N (¢) is a random variable

and represents the regression deviation (residual). The
least square error (LSE) is probably the best known
method for fitting linear regression models and by far the
most widely used due to its simplicity in computation,
However, the LSE is not necessarily the optimum fitting
method if the deviation N(¢) is not of the Gaussian

distribution. Moreover, the residuals in the LAD are
computed from the median, whereas in the LSE they are
derived from the mean. Because the median is a much
more robust estimator of the location than the mean, LAD
regression estimates are less sensitive to larpe outliers
(e.g., extreme values) than the LSE method. In particular,
if the deviation is double exponentially distributed, the
optimum method for linear regression will be LAD.

The basic idea of LAD regression problem is generally
stated as below.

Given a sample size of n points {X,, ;}, where
X, € R* for i=1,...,n, the LAD fitting problem is to

find a minimizer, & € R® , of the distance function
(absolute deviation). That it,
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such that, £ (&) = min(7(c)).

This problem is solvable because function f{c) is

where

continous and convex. Due to the nonlinearity of
absolute operation, solving LAD model is no longer a
linear problem. Since ILAD and LP are similar in their
very basic nature, an abundance of algorithms was
developed based on the well-studied linear programming
(LP) problem in the past. The LP problem in standard

form is to find X that maximizes f(x)}= (g, {} subject
to linear constraint 4Ax<b and x20 with given

vector ¢, b and matrix 4. With some straightforward

but tedious derivations, it ¢can be shown that any LAD
curve-fitting can be expressed as an equivalent bounded
feasible LP problem. We choose the Bloomfield-Steiger

algorithm to find the minimizer (Bloomfield and Steiger,
1980). The basic idea of this algorithm is to find the
normalized steepest direction in each iteration of the
algorithm. c ,

Suppose the cwrrent fit is and

i , ﬁ sy O 18 a set of directions along which the next

iteration could move, the optimum descent direction
being &, along which

min(f@ﬂéi_p),t eR)= min[minf@ +t§)),z’ <K](®

the inner minimization over t in R. To find this direction,
the K -weighted median calculations would need to be
done (one for each i in the right hand side of the
equation (3)). The pseudo code for the Bloomdfield-
Steiger (BS) algorithm is listed by (A1) in Appendix A.

For the sake of stability of the algorithm, before
applying the raw data to the BS algorithim, it’s better to
normalize each predictor beforehand. That is, for each
sample value of any target predictor, one subtracts it by
the associated sample mean, followed by dividing the
centered value by the sample standard deviation. This
ensures that the normalized sample values of each
predictor have zero sample mean and unit sample
variance.

4, Procedures for selecting predictor

"~ variables
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We first calculate the correlation coefficient
between the annual TC count series in the vicinity of
Taiwan and the relative data for each climate variable
(including SST, SLP, PW, VWS and vorticity) on each
available point on the grid (all within the same
rectangular plane bounded by ON, 30N in N-§ direction
and 120E, 180E in E-W direction). This procedure will
end with a matrix of correlation coefficients. Then, for
simplicity, we choose the point associated with the
maximum correlation coefficient (in absolute value) as
the key location and apply a two-tailed t-test to this
maximum vatue. If the resulted t-score is bigger than the
critical value under some significance level (such as 0.05),
we will choose the data series on this key location as a
predictor, The t-score can be calculated as below:

_mn-2
A1=#?

where, ¢ is distributed as Student’s t with # — 2 degrees
of freedom, # is the tested correlation coefficient and »
is the sample size (Bevington 2002), Specifically, for this
study, # =34 , leading the critical value under
significance level (.05 is 0.34.

! 4)



4.1 Sea surface temperatures (SSTs)

S8STs are known to be important for TC
formation and intensification. Warmer SSTs are expected
to fuel the overlying atmosphere with additional warmth
and moisture, thereby reducing atmospheric stability and
increasing the likelihood of deep tropical convection. In
this context, we calculate the correlation between the
number of TCs in the vicinity of Taiwan area and the
preseason SST (i.e., May) over the western North Pacific.
The contour plot for the correlation is shown in Fig. 1a
where a maximum (0.58) is found in the core of the warm
pool (2°N, 146°E). This value is statistically significant;
thus the SST series at this point is chosen as a predictor.

4.2 Sea level pressures (SLPs)

The contour plot for the correlation between the
TC frequency in the vicinity of Taiwan and the May SLP
is shown in Fig. 1b. The highest (in absolute value sense)
negative correlation (-0.48) is found at 15°N, 130°E, very
close to Taiwan. This result is physically reasonable as
lower SLPs to the southeast of Taiwan in May correspond
to higher TC frequency near Taiwan, and vice versa.
Dynamically, the juxtaposition of the maximum
correlations found in Figs. 1a and 1b suggests a Rossby-
wave type response of atmosphere to equatorial heating
as demonstrated in Gill’s model. Note that the maximum
correlation in Fig. 1b is also statistically significant.

4.3 Precipitable water (PW)

The entrainment of drier air in the midtroposphere
results in less buoyancy for the tropical convection
systems as well as diminish the upper-level warming due
to decreased release of latent heat (Knaff, 1997).
Consequently, drier atmosphere tends to suppress deep
convection and inhibits TC activity. Positive and strong
correlations between PW and TC frequency are found in
the core of the tropical western North Pacific where the
correlation coefficient reaches more than 0.6 and is
statistically significant (Fig. 1c). Thus, more moisture in
the atmosphere in the tropical western North Pacific in
May is conducive to more TC activity near Taiwan and
vice versa. Of particular note is a smaller area of high
correlation near 10°N, 137.5°E, and this maximum center
lies between the points with maximum correlations found
in Figs. 1a and 1b, '

4.4 Relative vorticity

The monsoon trough in the western North Pacific is
characterized by the strong relative cyclonic vorticity in
the lower troposphere and is known to be the birthplace
of typhoons. Figure 1d displays a positive and high
correlation in the Philippine Sea (17.5°N, 132.5°E) with a
value of 0.47, which is statistically significant.  This

result is internally consistent with those in Figs. 1band lc,
in that lower SLPs in the Philippine Sea induce stronger
cyclonic vorticity near the surface and higher moisture in
the atmosphere, leading to more TC frequency in the
vicinity of Taiwan. '

4.5 Vertical wind shear (VWS)

Strong VWS disrupts the organized deep convection
{the so-called wventilation effect) which inhibits
intensification of the TCs. Negative but weak
correlations exist in the low latitudes with a center near
5°N, 155°E (Fig. le). This cormrelation (-0.3) is, however,
statistically insignificant. A positive and strong
cotrelation is noted near 5°N, 120°E but that location is
too close to the western boundary of the domain and there
is a lack of physical explanation for the VWS and TC
frequency. As a result, VWS is not used in the
subsequent forecasting simulation.

4.6 CLIPER

The analysis of variance (ANOVA) method is a
statistical technigue to test the existence of hidden periods
in a time series. After the hidden periods for the series
are given, we can use persistence (CLIPER) to find the
periodical oscillation for this series.

The basic idea for CLIPER prediction is very
simple. We first find the most significant period (with the
maximum score), say p . If this score is less than the

critical value under the desired confidence level, we stop
and don’t use CLIPER as a predictor. Otherwise, we re-
group the series with respect to the period p . Then we

can calculate each group’s mean, which will be the
prediction for each year of this group. To avoid the
overfitting problem, we only use the first significant
hidden period to reconstruck the CLIPER predictor for
this study. Fig. 2a displays the result of applying
ANOVA to the annual TC series in the vicinity of Taiwan
for each possible period, where we can see, a 16-year
hidden period has the F-score way above the 95%
confidence line. By using this hidden period, we construct
the CLIPER predictor and the resulted series is plotted in
Fig. 2b. Aciually, the correlation coefficient between the
resulting series and the original TC series is 0.51 The
CLIPER shown in Fig. 2b is thus considered as a
predictor. '

5. Prediction results

With the various predictor variables selected
through correlation analysis, including SST, SLP, PW,
Vorticity and CLIPER, we then use a cross-validation
method to establish the overall forecasting ability of LAD
model. The approach is as follows (Yu et al., 1997). The



predictor and predictand data set of T time points are
divided into L segments. A model is then developed
using the data of L-1 segments. This model is then used
to predict TC fiequency in the remaining segment. This
process is repeated by changing the segment that has been
excluded from the model development. In this study, we
remove only one observation at a time for each case. By
doing this, we obtain N predictions. These predicted
values are then correlated with N observations and the
overall forecast skill can thus be determined.

The cross-validation results are shown in Fig. 3
and a reasonably skillful forecast is seen. In some years,
forecast values are smaller than actual observations (e.g.,
1982) but in other years they are larger than observations
(e.g., 1996). In fact, the mean of the real abservation is
3.85 while the mean of leave-one-out cross-validation is
3.82. That is, there is no systematic bias revealed in the
prediction scheme. The correlation coefficient between
the cross-validation result and the raw TC data is 0.75,
which means that almost 57% variation of the TC activity
in the vicinity of Taiwan area can be predicted based on
the large-scale climate information one month prior to the
peak season and the past history of TC records.

6. Summary

Climate prediction of tropical cyclone activity
has been carried out for the North Atlantic and the
western North Pacific by various research teams.
Because of the wvast expanse of ocean basins and
pronounced interannual climate variations in the tropics,
there is no guarantee that such basin-wide prediction is
also applicable to smaller regions within a basin. In this
study, a muliivariate least-absolute-deviation regression
method is adopted to predict the annual tropical cyclone
frequency in the vicinity of Taiwan using large-scale
climate information available in May. Through
correlation analysis between TC frequency and each
individual climate variables (e.g., SST, SLP) over the
western North Pacific, we identified key locations to be
used as the predictor data sets. We then used the leave-
one-out cross-validation technique to test the
prediciability of TC frequency. The cross validation
provides a nearly unbiased estimate of true forecast skill.
The linear correlation between the cross-validation
predictions and the corresponding actual observations for
the test period 1970-2003 is 0.75. This result implies that
it would be possible to predict the annual TC counts for a

small area with reasonable skill using a physically based
regression model. In the future, it would be of interest to
determine the predictability of TC frequency when
climate variables chosen are for months prior to May.
Apart from pure scientific inquiry, if good skills can be
obtained, say, when the April predictors are chosen, it
would allow decision makers more lead time to response.
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Figure caption

Fig. 1. (a) Correlation map between tropical cvclone
count series in the vicinity of Taiwan and the May sea
surface temperatures over the fropical western North
Pacific (0°N - 30°N in latitude and 120°E — 180°E in
longitude).

(b) Same as {a) except for the May sea level pressures.,

(c) Same as (a), except for the May precipitable water.

(d) Same as (a), except for the May relative vorticity at
850 hPa.

(e) Same as (a), except for the May vertical wind shear

Fig. 2. {a) F-scores for each possible hidden period by
applying the ANOVA to the annual TC series in the
vicinity of Taiwan.

(b) Constructed CLIPER predictor for the TC series with
a 16-year hidden period. The Solid line presents the
CLIPER prediction (in leave-one-out cross-validation)
and dotted line shows the original series.

Fig. 3. Time series of observed and cross-validated
forecasts of tropical cyclone counts. The solid line
denotes the leave-one-out cross-validation results by
using LA method, while the dotted line displays the
original observation.
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