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Abstract

In this study, a Poisson generalized linear regression model is applied to the TC counts series in the Central North
Pacific. The SLP, PW, NINO34, SOI, and CLIPER are chosen as the predictors. With a non-informative prior assumption
for the model parameters, a Bayesian inference for this model is derived in detail. A Gibbs sampler based on the Markov
Chain Monte Carlo (MCMC) method is designed to integrate the desired posterior and predictive distribution. The
proposed hierarchical model is- physically based and a probability distribution is shown for predicting TC frequency in
1982 and 1992 . A cross-validation procedure is applied te the TC series and reasonable fotecast results are achieved.

1. Introduction

W. Gray pioneered the seasonal hurricane prediction
enterprise using regression based linear statistical models (Gray et
al, 1992, 1993, 1994). They showed that nearly half of the
interannual variability of hurricane activity in the North Atlantic
could be predicted in advance. This is amazing because hurricane is
a small system and physical mechanisms governing its formation
are cemplicated and still not well understood. Gray and his
associates have constantly revised their forecasts as time
approaches the peak season and operationally issued seasonal
forecasts for the Atlantic basin.

Elsner and Schmertmann (1993) considered a different
approach to predict intense annual Atlantic hurricane counis.
Specifically, the annval hurricane occurrence is modeled as a
Poisson process which is governed by a single parameter, the
Poisson intensity. The intensity of the process is then made to
depend upon a set of covariates such as the stratospheric zonal

winds and the west Sahel rainfall via a multiple regression equation.

Parameters of the regression are estimated by maximum likelihood.
Recently, Elnser and Jagger (2004) introduced a Bayesian strategy
to the Poisson regression model so that the predicted annual
hurricane numbers could be cast in terms of probability
distributions. This is certainly an advantage over the deterministic
forecasts because the uncertainty inherent in forecasts is
quantitatively expressed in the probability statements.

Also recently, Chu and Zhao (2004) applied a Bayesian
analysis to detect change points in the tropical cyclone (TC) series
over the central North Pacific. In Chu and Zhao (2004), the annual
TC counts are described by a Poisson process where the Poisson
intensity is conditional on a gamma distribution. A hierarchical
Bayesian approach is applied to make inferences, in terms of the
posterior probabilities, about shifts in the TC time series. In view
of the probabilistic nature of the Bayesian paradigm, this study will
use the Poisson regression cast in the Bayesian framework to
predict the seasonal TC activity over the central North Pacific prior
to the peak hurricane season.

2. Data

Monthly mean sea level pressure (SLP), wind data at the
1000-, 850-, and 200-hPa levels, relative vorticity data at the 1000-
hPa level and total precipitable water (PW) are derived from the
National Centers for Environmental Prediction — National Center
for Atmospheric Research reanalysis dataset {Kistler et al., 2001).
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The horizontal resolution of the reanalysis dataset is 2.5° latitude-
longitude. Tropospheric vertical wind shear is computed. as a
square root of the sum of the squared difference of the zonal wind
component between 200- and 850-hPa and the squared difference
of the meridional wind cemponent between 200- and 850-hPa
(Clark and Chu, 2002). The monthly mean sea surface
temperatures (SSTs} over the North Pacific aré taken from
Reynold’s reconstruction of the Comprehensive’ Ocean-
Atmosphere Data Set. SST data are available on a 2° latitude-
longitude. Chu (2002) used the reanalysis and the reconstructed
SST datasets to investigate circulation features associated with
decadal variations of tropical cyclone activity over the central
North Pacific (Fig. 1). Nino 3.4 region sea surface temperature
(SST) and the Southern Oscillation Index (SOI) data are obtained
from the NCEP/Climate Prediction Center.

3. Predictor Selection Procedure

Initially, plausible predictor candidates include SST, SLP,
low-level relative vorticity, vertical wind shear, two El Niiio
indices (i.e., the Southern Oscillation Index and Nino3.4 index),
precipitable water in the atmosphere, and the inherent short-term
oscillations in TC series. Pearson correlations between TC counts
at the peak season and each one of those potential predictors for
each bi-month from January through June are computed. Because
the peak TC season in the CNP is July, August, and September
(Chu, 2002), TC counts from these three months are summed to
produce a seasonal value. If correlations between the seasonal TC.
frequency and one of the predictor candidates are statistically
significant over a particular region of the North Pacific, then this
predictor varfable over this area for this bi-month is retained. For
the sake of simplicity, if there is more than one region that is
significantly correlated with the peak season TC frequency, we’ll
only choose the one with the highest value.

For seasonal TC frequency over the CNP and SLPs over the
North Pacific during the antecedent March/April, a strong negative
correlation is found over the tropical/subtropical eastern Pacific.
That is, lower SLPs over the eastern Pacific in the preceding
March/April are correlated with high TC frequency over the CNP
and vice versa. This result is reasonable physically. Lower SLP
implies decreased subsidence which would result in weaker trade
wind inversion (Knaff, 1997). Because the trade wind inversion
acts as a lid to atmospheric convection, weaker inversion would
promote deep convection to grow. The occurrence of deep
convection is important for TC formation because it provides a
vertical coupling between the upper level outflow and lower
tropospheric inflow circulations.  Likewise, precipitable water -
content over the tropical/subtropical eastern North Pacific in the



preceding March/April is positively and significantly correlated
with TC counts. Adequate moisture in the atmosphere provides a
fundamental ingredient for deep convection. Not surprisingly, the
area where the correlation is high between precipitable water and
TC is also approximately the region of high, negative correlation
between SLP and TC. We have also computed correlations
between seasonal TC frequency and some dynamic variable (e.g.,
vertical wind shear, low-level relative vorticity) of the preceding
months over the North Pacific but do neot find them to be
statistically significant.

As previously mentioned, the El Nifio influence on TC
activity over the CNP is very pronounced (Chu and Wang, 1997;
Clark and Chu, 2002). This influence is mainly reflected by an
increase in the low-level cyclonic vorticity as induced by the
eastward displacement of the monsoon trough from the western
Pacific and by a concomitant reduction of the vertical wind shear
over the CNP. Because. tropical cyclones over the eastern North
Pacific tend to form farther westward during El Nifio years (Chu,
2004), they may propagate further west and perhaps enter the CNP
when vertical wind shear is less. Due to the simultaneous change
in large-scale circulation over both the eastern and western North
Pacific, there are more TCs observed over the CNP during El Nifio
years.  Because El Nifio is a coupled ocean and atmosphere
phenomencn, we use one atmospheric index and one ocean index
to represent El Nifio. The atmospheric index is the standard SOI,
which is the difference in normalized sea level pressures between
Tahiti and Darwin in northern Australia. Large and negative SOI
corresponds to the El Nifio condition. On a seasonal time scale,
Clark and Chu (2002) found a strong correlation between the
summer SOI and TC counts over the CNP. This correlation
reaches -0.54, significant at the 1% level after taking climatological
persistence into account. For the ocean index, a common one is
the SSTs in the Nino 3.4 region, which covers an area between 5°N
- 5°8 and 170°W - 120°W.  Accordingly, a Nino 3.4 index is
chosen. )

The analysis of variance (ANOVA) is a traditional statistical
technique to reveal the existence of hidden periods in a time series
(e.g., Chan et al, 1998). The basic idea is to repeatedly divide the

data batch into groups with a given period T and calculate the
ratio of the within-group variance and the among-group variance.
If this ratio exceeds the critical value at a given confidence level,

then the data series is regarded as having a significant period T.
We do this analysis to all possible hidden periods and only 2-year
period is significant.

Once the hidden periods for the TC series are determined
from the variance analysis, these variations can be used as
climatology and persistence (CLIPER) predictors.  Calculating
CLIPER predictor is basically a cross-validation procedure, We
first re-group the time series according to the hidden period, In our
study, the TC series has a significant period of two years. Second,
we use the group mean, excluding this data itself, as its cross-
validation prediction. We do this procedure to all the data and the
resulted series wili be the CLIPER predictor.

4. Mathematical model for TC counts

A Poisson process is a proper probability model for
describing independent, rare event counts. Given the Poisson

intensity parameter A (i.e., the mean seasonal TC rates), the

probability mass function (PMF) of h TCs occutring in T years
is (Epstein, 1985)

P(h|AT)= exp(—}LT)(;th')h,
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where h=0,1,2,... and A«>0, >0 ) (D)

In many cases, a TC time series cannot simply be described by a

constant rate Poisson process. Thus, the Poisson intensity,,/l ,
should not be treated as a determinant single-value constant but as
arandom variable.

In this study, we apply the Poisson generalized linear

model. Assume there ate [N observations and for each

observation there are K relative predictors. We define a latent
random N-vector Z. , such that for each observation hi .
i= 1,2,...,N s Zi = logit,,. , where lli is the relative
Poisson rate. The link between this latent variable and the
predictors is exptessed as 2 P = X,.B +E, , where
B=[Boaﬁ19ﬁ2a"'aﬁ[{]' is a random vector, &; is
assumed to be identically and independently distributed (IID) and
2
is normally distributed with zero mean and O~ variance and
Xj = [1, X’j1 ’XfZ ,...,X,-K ] is the predictor vector for hj .

In the vector form, this model can be formulated as below:

P(hlZ)=HP(hi 1Z;)

i=1
where B, | Z, ~ Poisson(ez’)
Z||3,0'2,X~ N(Xﬁ,O'ZIN),
X'=[X,X,... X1,
1 N is N XN identity matrix,

X, =[1,5OI,, PW,,SLP,, NINO,, CLIPER,]

i=12,.,N,
B=[ﬁ0’ﬁ1:ﬁ23ﬁ3aﬁ4’ﬁ5]'

_ @
5. MCMC approach to the Bayesian Inference

5.1 General idea of MCMC

In general, let us assume O be the set of the model

parameteis and h be the data for the analysis. The basic Bayesian
formula is described as:

p(0|hy =B OPO)
[P(h|0)P@8)d0

o P(h|0)P(0)

€))

where “©< " means “proportional” since 0 in the denominator is

only a dummy variable. Tn this formula, P (h | 9) is the

conditional distribution of data h given the model parameters 0

(i.e,, the likelihood given the model) and P (9) is a prior




distribution. Formula (3) provides the inference for posterior
distribution P (9 | h) , the probability of 0 after the data h are
observed. It is also clear that data affect the posterior distribution
only through the likelihood function P(h |0) . To make
predictive inference, we rely on the posterior predictive distribution

P(l|h) = [ P(h|0)P(8 | h)d @

where N denotes the prediction (Gelman et al, 2004).
P (h |h) is the posterior predictive distribution since it is
conditional on the observed data h and provides a prediction for the

unknown observable N . This formula is at the heart of Bayesian
analysis.

The MCMC approach is one of the efficient algorithms for
Bayesian inference. The general Bayesian analysis method
described above essentially involves integrating the posterior
expectation

E[a|h] = [a@®)P(0 | h)d®

0

‘where a(ﬂ) can be of any function conditional on the model

parameters 0 . This expectation, however, is very difficult to
integrate in most models. Alternatively, a numerical way to
calculate such an expectation is to use Monte Carlo integration by

Bla b =13 a®")

where 9[1],9[2],...,9[L] are independently sampled from

P (9 | h) . When L goes to infinity, this approximation will
converge to its analytical integral under very general condition.

This method is straightforward, but practically it is often
infeasible to generate such an independent series

9[1],9[2],...,9[” when P(G!h) is  complicated.

Nonetheless, in most of applications, it may be possible to generate
a series of dependent values by using a Markov chain (MC) that

has P(0 ‘ h) as its stationary distribution. The MC is defined

by giving an initial distribution for the first state of the chain 9[ ]
. - i+l ;
and a set of transition probabilities for a new state G[H ! that is

conditional on current state 9['] . Under very general condition

(i.e., the MC is ergodic), the distribution for the state will converge
to a unique stationary distribution.

5. 2 Gibbs sampler for the Bayesian inference of
TC model

A common MCMC integration is known as the Gibbs
sampler. Let us first derive the posterior distribution for the model
given by (2). Since we do not have any credible prior information

. R 2, . )
for the coefficient vector B and the variance O ~, it is reasonable

to choose the non-informative prior, In formula, it is (Gelman et al.,
2004)
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2 -2 -
P(B,c")ec 0 ‘ ®)
This is not a distribution function; however, it leads to a proper

posterior distribution.
With the new

set X = [1, Xilﬂszr"’XiK] , if we have the posterior
distribution of the parameter, the predictive distribution for the

observed ' predictor

~

latent variable Z and TC count A  will be

P(Z | X,X,h)

= H,, . P(Z |B,6*)P(B,0* | X, h)dpdo?’
~ o~ (6a)
P(h | X,X,h)

_j exp(—ef +Z};)

- P(Z | X,X,0)dZ
Z hl .

(6b)

However, even with the non-informative prior assumption,

e 2..
the posterior distribution for the model parameter set ( B O )is

still not a standard density distribution and directly sampling from
it is very difficult. In this section, we will design a Gibbs sampler,

’ 2 . . PRI
which has P(P,0 | X, h) as its stationary distribution, and
then we can use an alternative approach to integrate (6a) by

P(Z| %, X.h) =%§P(2 |(B.0H)7)

M
where (B, g 2 )[J] is the i-th sampling from this proposed Gibbs
sampler after the burn-in period.

The overall Bayeéian inference for this TC model is as below:

P(Z, |hB,Z_,07%)
1

o< explexp(—e“ )+ Z.h, — Z. - X p)’

Xp xp(—e™ )+ Zh, 202(' B
i=12,.N

(82)

B|Zh,0? ~ NB,(X'X)"0?)
where p= (X' X)'X'Z (8b)

0% |hZ ~Inv-x2(N - K,52)
where 8% = ﬁ(Z—Xﬁ)'(Z—-Xﬁ) and

Inv- X 2 refers to the scaled inverse- ¥ 2 distribution.
: (8c)

The Gibbs sampling algorithm is briefly outlined.




201 and set

L. Select proper initial value for ZI, B, &
r=1.
2 praw  Z' fom  ZV |, P gy
i=12,..,N viakq. (8a)

3. Draw 02 from 27 | h, Z via g 8¢),

4.Draw B som BT |, ZM, 6% via Bq. (8b)

5.Set £ = £+ 1 then go back to step 2 until meeting the required
number of iterations.
o ®

With the observation data B and following Eq. (9), one thereby

2 . .
can sample a set 7., B, O~ for each iteration .

6. Bayesian prediction

There are a total of 38 years (1966 — 2003) of TC counts in
the CNP. We apply them in the framework given above. The
model is detailed as formula (2) and as described in formula (3), we
have 5 predictors.

In order to verify the effectiveness of the proposed method,

we design a cross-validation test for this dataset. Cross-validation
is a generalization of the common technique of repeatedly omitting
a few observations from the data, reconstructing the model, and
then making estimates for the omitted cases. In this study, only
one point is removed from the data set repeatedly and
developmental data sets contain size n-1.

We apply these datasets to the designed Gibbs sampler, and
use its output as the posterior sampling of the model parameter.
With these sampling sets, after plugging in the target year's
predictor observation, we use the formula (8) to determine the
posterior predictive distribution of the latent variable Z which is

equivalently to the natural logarithm of the TC rates, A.m Fig. 2,
the predicted TC rates (solid line) are plotted together with the
actual observation (dotted line) for each year. We plot the
prediction based on the predictor variables in March/April in Fig.
2a, while in Fig. 2b we plot the prediction based on predictor
variables in May/June. The reason that we test the case with
information up to April is because a 2-month lead time is
considered useful in an operational mode.  The predicted TC
count rate in Fig. 2a is very close to the observation and the
Pearson correlation between them is 0.65. In Fig, 2b, the Pearson
correlation between observations and forecasts is as high as 0.79.

Also, one of the significant advantages of the Bayesian
analysis, comparing to a conventional regression model, is that
rather than predicting a single point value, the former can give out
a predictive distribution of the TC counts for each individual year.
For example, in Fig. 3, we present the posterior predictive
distribution for the seasonal TC counts through a cross-validation
procedure for 1982 and 1992.  For both cases, the observed TC
frequency is in line with the mode {most frequent) of the predictive
distribution.
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