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Abstract

We propose a semi-Lagrangian advection scheme by using forward trajectories and a general
interpolation procedure from the irregularly distributed Lagrangian grid to the regularly distributed Eulerian
grid. The general interpolation procedure has virtually no restrictions, and the advection scheme is
absohutely stable due to the direct calculation of forward trajectories. They are, therefore, applicable to
problems of any extent of deformation with arbitrary Courant numbers. The scheme is also quite efficient,
because this interpolation procedure actually converts a two-dimensional problem into a sequence of one-
dimensional problems by employing an intermediate grid. The slotted cylinder of Zalesak under the motion
of solid-body rotation is tested for the accuracy of this 'internet interpolation method'. The idealized
cyclogenesis of Doswell is simulated to demonstrate the ability of the advection scheme for accommodating

strong deformation flows. Both tests indicate satisfactory accuracy.

Figure 2. A particle on the Eulerian grid (dashed lines) at time r,, travels to a point on the Lagrangian grid {full

lines) at time £, as shown by the arrow, and the corresponding Eulerian coordinate lines x = x; and y=y; are

transformed to the Lagrangian coordinate lines x = x; and h = ¥;. respectively. We note that the vafues of f on

the Eulerian grid can be easily interpolated with one-dimensional formulae from the intermediate gnid consisting
of she intersections of the Lagrangian curves and the Eulerian v-lines x = x;.
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1. INTRODUCTION

Backward trajectories are currently widely adopted
in semi-Lagrangian schemes. Their main advantage is
that the variables can be evaluated conveniently on a
straight-line Eulerian grid; the disadvantage is that
trajectories canﬁot be calculated directly. Instead,
implicit equations need to be solved iteratively for the
displacements, and this can be very costly. On the other
hand, forward trajectories can be obtained easily with
great accuracy (Purser and Leslie 1994), but the
variables are difficult to evaluate on a curvilinear
Lagrangian grid. One of the major difficulties in using
forward trajectories for semi-Lagrangian advection is
how to interpolate from the irregularly distributed
Lagrangian grid to the regularly distributed Eulerian
grid, Purser and Leslie (1991) found the 'cascade
interpolation method', and Sun et a/. (1996) proposed
the 'split interpolation method', both methods being
based on splitting the dimensions of the geometric
space to simplify the interpolation formulas. These two
methods are both very efficient with satisfactory
accuracy, but the dimension split leads to a restriction
which is slightly more stringent than the stability
criterion of conventional semi-Lagrangjan schemes (Sun
et al. 1996). By using the intersections of the
curvilinear Lagrangian network and the straightline
Eulerian network, we have found an accurate and
efficient interpolation method without splitting the
dimensions, and therefore avoid the associated
restriction. It is called the 'internet interpolation
method', because an intermediate grid consisting of the
intersections is employed in the procedure, as is

presented in Sectioh 2.

2. INTERNET INTERPOLATION METHOD

Consider the problem of two-dimensional passive

advection which is governed by the equation
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Assume that we know f(x, y, #) at all Eulerian grid
points at time £, we wish to obtain values at all
Eulerian grid points at time #,+1. The semi-Lagrangian

advection employing forward trajectories is:
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where aj; and by; are the x- and y-components of the

displacement of the (7, /)th particle within the time

interval ¢y, fn+1], respectively. They can be calculated

directly by the integrals
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Finally, we need to interpolate the values of £ from the
Lagrangian grid to the Eulerian grid. Given an
Eulerian coordinate system, let {x;, j) be the Eulerian
coordinates of the (7, /)th Eulerian grid point. We notice
that the lines defined by the equations x =x;and y = yi
constitute an Ewlerian network. On the other hand, a
Lagrangian nefwork is induced by the motion of the
fluid from the Eulerian network, as illustrated in Fig. 1.
We note that the particle that is located at the (i, j)th
Eulerian grid point at time ¢; travels to the (7, /)th
Lagrangian grid point at time #,,+1, and a natural
Lagrangian coordinate system can be defined such that
the Lagrangian coordinates of the (7, j/)th Lagrangian

grid point are just {x;, y;). Furthermore, the Eulerian
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coordinates of the (7, /)th Lagrangian grid point are just
Xij=xi+ajand ¥jj=y; + bj;. Consequently, the
.Lagrangian network can be well constructed by fitting
curves to the data { X 3 { Yy}, (i ) onthe
Lagrangian coordinate system. The Lagrangian network
thus provides information about the Eulerian |
coordinates and the values of /for an arbitrary point
with given Lagrangian coordinates.

The strategy of the internet interpolation method is
to find an intermediate grid consisting of the
intersections of the Lagrangian network and the Eulerian
network, and then interpolate from the intermediate grid
to the Eulerian grid. To find the intersections and,
therefore, the intermediate grid in terms of Eulerian
coordinates, let us consider the x-curve Xjj in the
Lagrangian network connecting the (i j)th and the (/+1,
J)th Lagrangian grid points, Assume that the
Lagrangian network is constructed with cubic
polynomials, then the Eulerian coordinates and the

values of ffor the points on the Lagrangian x-curve Xjj

are expressed as

X(s)=a3.s3+ a252+a1s+a0, 3
¥s)=b3s3+ bysZ+ brs+ by, )
F(s)=c353+ cgsz+ c] s+ cp, {5)

with the Lagrangian coordinates s (€ [x;, xj+]].

Moreover, the range of X(s) can be easily determined by

finding its critical points, i.e. where dX/ds = 0.
Suppose that xz is in the range of A{s), then the
Lagrangian x-curve xjj intersects the Eulerian y-line /g
defined by the equation x = xf in terms of Bulerian
coordinates Solving the equation

a3 s34 ars2+ ay s+ ap =xk &)
for s (E [x;, x;+1] by formulas, we can obtain at most
three distinct roots: 51, s2 and s3. Substituting .the
roots into Eqs. (4) and (5) yields three intersection
points (xg, ¥(s1)), (xf, ¥{s2)) and (xz , ¥(s3)) in terms

2

of Eulerian coordinates, with the fvalues F{(s1), F {s2)
and F(s3), respectively. Similarly, we can find the
intersections of the Eulerian y-line /¢ and the Lagrangian
y-curve hj; that connects the (i, j)th and the (i, j+1)th
Lagrangian grid points. We collect all the intersections
of the Lagrangian curves { Xjj, hj } and the Eulerian y-
lines { /k }, and sort the data points on Eulerian y-
coordinates for each Eulerian y-line, then obtain the
intermediate grid in terms of Eulerian coordinates. The
values of fon the Eulerian grid can therefore be easily
interpolated from the intermediate grid with one-
dimensional formulas on the Eulerian y-lines, as
illustrated in Fig. 2. We summarize the procedure of
the internet interpolation method as:

(i) Construct the Lagrangian network induced by
the motion of the fluid from the Eulerian network, by
fitting the data { Xy }, { Yij . {fij } on the
Lagrangian coordinate system with cubic or other
potynomials.

(1i) Find the intermediate grid consisting of the
intersections of the Lagrangian curves { x;;, hj; } and
the Eulerian y-lines { /¢ } in terms of Eulerian
coordinates,using Eqs. (3), (4) and (5).

(iii) Interpolate the values of / from the intermediate
grid onto the Eulerian grid with one-dimensional

formulas on the Eulerian y-lines,

3. NUMERICAIL SIMULATIONS

To emphasize the smoothness of the flows, cubic
splines are employed for all interpolations in the tests.
For properties of the Lagrange polynomials of degrees
3,5and 7 incofporated in the advection scheme
employing forward trajectories, the readers are referred to
Sun ef al. (1996). The spatial filter of Sun a7 al. (1996)
is adopted to eliminate the spurious short waves and to

achieve the positive-definiteness. Exact trajectories are
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used in all tests, because the velocity fields are steady-
state and the trajectories can be integrated exactly.
Analytic boundary conditions are used in all tests. The
maximum Courant number is defined as

CN=max {|uDt/Dx|,|vDt/Dy|}.

The accuracy is measured by the root-mean-square error

definedas

, JM
Error = mZz(ﬁj -g;)?

i=1j=1

1/2

>

where fj; and gj; are the numerical and analytic
solutions, respectively, and N and M are the numbers of

grid points in the x- and y-directions, respectively.

(z) Slotted cylinder ynder solid—ﬁadz roiation

The accuracy of the internet interpolation method is
tested using the slotted cylinder of Zalesak (1979) under
the motion of solid-body rotation ahout the center of the
domain. The initial condition is shown in Fig. 3(a),
where the radius of the cylinder is 1~5 Ax, the width of
the groove is 6 Ax, the domain is 100¥100 sz, and the
amplitude of the distribution is !. The numerical
solution after five revolutions (220 time steps, CN =
7.1, Error = 0.061), obtained using the internet
interpolation method, is almost identical to that
obtained by the split interpolation method (see Figure 8
of Sun er af. 1996). Another comparison is made to the
excellent results of Bermejo and Staniforth (1992). Cur
numerical solution after six revolutions (576 time steps,
CN = 3.3, Error = 0.068) is shown in Fig. 3(b). We
see that the shape is well preserved--the amplitude is
well maintained, the groove is well resolved and the
dispersion is negligible. A profile across the groove is

shown in Fig. 3(c).

(b) Doswell’s idealized cyclogenesis
348

fxy,t) =—tanh[~(y_8—yc) cos (f) —

3

The idealized cyclogenesis of Doswell (1984) is
simulated to demonstrate the ability of the advection
scheme for strong deformation flows. The velocity field
is a circular vortex with a tangential velocity
V(r) = 4 sech? () tanh (),
where r is the radius of the vortex and 4 is chosen so
that the maximum value of ¥ equals 1. The scalar
initial condition is

Sy 0)=-tanh [(y - ye)d],
where d is the characteristic width of the front zone, as

defined by Hélm {1995). The analytic solution is

(i%-g-c-c—) sin (o)

J
where (x¢, vc) is the center of rotation and w = Frr is
the angular velocity.

The integration domain is 10 units long with a
resolution of 652 and 1262 grid points, The integration
time is 5 units, and is chosen so that the analytic
solution is still resolvable on the low resolution grid.
Nearly perfect results are obtained for the smooth cases
with d * 1, and we are interested only in the non-
smooth case with d = 0.05. The analytic solution on
the high resolution grid is shown in Fig. 4(a). We note
that the simulation (64 time steps, CN = 1, Ervor =
0.083) shown in Fig. 4(b) is comparable to the
excellent results of Holm (1995). The advantage of our
scheme, however, is that there is no restriction on the
maximum Courant number. A simulation of a greater
maximum Courant number (16 time steps, CN = 4,
Error = 0.068) is shown in Fig. 4(c). We also note that
almost-identical results are obtained on the high
resolution grid when the economic version of the

intermedtate grid is employed.
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Figure 3. The slotted cylinder test. (a) The initial condition. {b) The numerical solution after
six revolutions (576 time steps, CN = 3. 3, Error = 0.068). (¢} The profile of the numerical solution
across the groove through the center of domam where the analytic and numerical solutions are
shown by dashed and solid lines, respectively.
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Figure 4. The idealized cyclogenesis test in the non-smooth case. (a) The analytic solution
after 5 time units. (b} The numerical solution at the same time with 64 time steps {CN = 1, Error =
0.083). (c) The numerical solution at the same time with 16 time steps (CN = 4, Error = 0.068)
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