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1. Introduction

Mountains act as a heat and moisture source
that can influence the formation of precipitation sys-
tems. Mountains can also disturb the prevailing wind
and produce a divergence/convergence pattern as
well as a lifting effect. These phenomina also af-
fect the occurrence of precipitation systems. Kuo
and Orville (1973) studied mountain storms over the
Black Hills in South Dakota, U.S.A. They found that
the prevailing wind could affect the position of the
formation of such storms. Storms formed upstream
and downstream of the mountainous area in the af-
ternoon. Karr and Wooten (1976) analyzed radar
echoes over the Rocky Mountains. They found that
mountain *hot spots” were favorable for the forma-
tion of radar echo. Banta and Schaaf (1987) used
satellite data to trace where mountain thunderstorms
initially formed and found that that occured only on
lee side. The "lee side convergence zone” as a favor-
able place for the formation of cumulus clouds has

also been proposed by Banta (1984).

As mountains occupy so much of the land-mass
of Taiwan island (Fig. 1), its effects on the forma-
tion of mountain storms is very important. Liao
and Chen (1984) presented iwo cases where storms
formed in mountainous areas in the afternoon and
then moved toward the Taiwan strait under a south-
easterly wind. In 1987 the Taiwan Area Mesoscale
Experiment (TAMEX, Kuo and Chen, 1990) was
held in Taiwan. One of its objectives was to study
orographic effects on the formation of precipitation
systems. Johnson and Bresch (1991) found (May 24,
25 and 26, 1887) from TAMEX'S data that precip-
itation systems formed predominantly between the

100- and 500-m elevations in the foothills of the in-

terior mountains rather than over the higher eleva-
tions farther inland during undisturbed periods (Fig.
2). Chen et al. (1991) studied a mountainous storm
which formed in a mountain slope area in the after-
noon in northern Taiwan which then moved eastward
on 7 June 1987. This system dumped more than 100
mm of precipitation at some stations in only a few
hours {Fig. 2). The maximum reflectivily was over
50 dBZ along the steep slope and near the mountain
peak. On June 19 and 20, 1987 significant rainfall
was also observed (Fig. 2) when a Pacific high prees-
sure arez was present over Taiwan. One common
feature was that most of rainfall occurred in the af-
terncon for these six days (May 24, 25, 26, June 7,
19 and 20) (Fig. 3) under the influence of the Pacific
high pressure area (Fig. 4). However wind profiles

around Taiwan island were not necessarily the same.
To understand if any relationship between the wind

profiles in the upsteam direction of Taiwan island
and the formation of & cloud and precipitation sys-
tem is good for forecasting the occurrence of cloud
and precipitation systems, we will present the obser-
vation results in section 2. Some simulation results
regarding the formation of cloud and precipitation
systems under the influence of the observated wind
in an upstream direction from Taiwan by a three di-
mentional numerical model will be given in section

3. A brief summary is provided in section 4.

2. Data Analysis

Figure 4 presents the synoptic-scale surface map
at 0800 LST{0000 UTC) on May 24, 25, 26, and June
7, 19 and 20 respectively. Taiwan was situated on
the western side of a Pacific High pressure system
in general. However the detailed position was not
necessarily the same day by day. The Pacific High
pressure system continually moved toward southern

China from May 24 to 26. Thus the wind direction
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shifted from 230° (May 24, 23) to 250° (May 26)
between 2 to 3 km height (Fig. 5). On June 7,
the Pacific High pressure retreated eastward and the
wind was nearly westerly (254°) (Fig. 5). From June
19 to 20 a Pacific High moved west and the wind
direction changed from 163° (June 19) to 188° (June
20) (Fig. 5) between 2 to 3 km in height.

Under the influence of insulation when the Pa-

cific High pressure was present, the on-shore flow and
upslope wind was very evident over Taiwan island.

Fig. 6 presents one example at 1200 LET on 20 June.
Wind was from the south or the southwest in the
remote islands, however the on-shore flow was very
evident in northern and central Taiwan. Besides up-
slope wind occurred in the sloped area in northern
Taiwan. Johnson and Bresch (1991) also indicated
that the sea-breeze onset was typically around 0900
LST on May 24, 25 and 26. The level of free con-
vection (LFC) was near or less than 1 km in height
in the afternoon (Fig. 7). Most of rainfall occurred
in the afternoon (PFig. 3), in the mountainous and
sloped area (Fig. 2) but not along the coastal area.
Thus the topography was very important. Lifting
due to the interaction of an on-shore flow and upslope
wind with topographical or other mechanisms was
expected to help air parcels at the low level to rise
and form cloud and rain. Johnson and Bresch pro-
posed that the inflowing sea-breeze, first an abrupt
rise in the topography, thus causing the formation of

precipitation along a sloped area.

The precipitible water content was 47 kg m™2
on May 26. It were greater than 52 kg m™2 in the
other five cases, Thus the rainfall amount was least
on May 26 among these six cases. On June 19 most
of the rainfall took place over western and northwest-
ern Taiwan when wind at the 2 to 3 km height was
from south-south east. The rainfall occured in the
down stream area of Taiwan’s topography. In the
other five cases rainfall also occured in the down-
stream area. However on May 24, 25, 26 and Jhne 7

rainfall also took place in an upstream areas as well
as in a downstream area. Thus the wind direction

as well as the topography was also important for the

occurrence of a cloud and precipitation system.

3. Model Structure

The numerical model used in this study was a
finite-difference approximation of the elastic, non-
hydrostatic equations governing atmospheric motion.
This model utilized the compressible equati.ons which
were efficiently solved by separating out sound wave
terms and integrating them with a smaller time step
than that used for the convective processes, in order
to maintain computational stability. The predicted
variables included horizontal and vertical velocities,
pressure, potential temperature (#), the mixing ratio
of water vapor (g, ), of cloud water (¢} and of rain-
water (g }. Cloud water and rainwater growth were
parameterized in the manner suggested by Kessler
(1969), but with the coefficients used by Klemp and
Wilhelmson (1978). The subgrid scale parameteriza-
tion used in this study followed Lilly’s formulation
(1962) which depended on the relative strengths of

stratification and shear.

The boundary conditions of the velocity compo-
nents for the upper and lower boundaries were as-
sumed to have zero normal velocity and zero normal
velocity gradient conditions for the horizontal veloc-
ities. There was also no normal gradient for 6, g,,
¢:, and ¢, at the boundaries. In the upper half of

the model domatn, a region of Rayleigh friction and

‘Newtonian cooling were applied to the perturbation
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velocities and €. The lateral boundary conditions
were assumed to have no horizontal gradient at the
inflow boundaries, but Orlanski (1976) type condi-
tions were employed for the horizontal velocities of

the outflow boundaries.

The numerical scheme used in the model was
similar to that of Durran and Klemp (1982). The
model domain was 400 km X 800 km X 10 km. The
horizontal grid interval was 10 km and the vertical
grid interval varies from 173 m near the surface to
642 m near the top. The big time step was 4 seconds
and the small time step was 1 second. Smooth terrain
with mountain peak 3 km in height was assumed in
the model (Fig. 8).



4, Simulation results

The initial temperature and moisture profile
used in the model are shown in Fig. 7 while the ini-
tial wind profiles are presented in Fig. 5. To avoid
the big shock in the model, the wind speed was ini-

tially made to be zero everywhere in the model and

then slowly increased in the first three hours to its .

environmental value assumed in the model. Then
we let the model run for another hour. At 4 hours
of simulation time surface heating was activated on
the lowest level over the land for another two hours.
The heating added to the model was similar to that
in Banta, (1986). During this time the surface tem-

perature could increase about 2° K over the plain in
the model, which was close to the observed value for

the maximum temperature variation at 1300 LST in
these six cases.

Fig. 9 shows the streamline at 4 hr for the May
24 case. Stippled and hatched areas in Fig. 9 rep-
resent the maximum cloud water and rainwater, re-
spectively, in a vertical column after 6 hr of the sim-
ulation time (2 hours after surface heating is acti-
vated). Cloud and rainwater occurred in the upslope
aree (western side of Taiwan) and mountainous ar-
eas where topographic lifting was evident (Fig. 9).
The convergence areas in northeastern and south-
eastern Taiwan were also covered by cloud and rain-
water. Upsloped wind could later enhance the con-
vergence when heating was activated. The distribu-
tion of cloud and rainwater were basically similar to
the cloud image (Fig. 3) and rainfall ameunt (Fig.
2). Figs. 10,11, 12,13 and 14 are for May 25 and 26,
June 7, 19 and 20 respectively. In general cloud and
rain occurred in the central mountain area where lift-
ing and heating was evident. To the upstream side
of the mountain where topographic lifting was obvi-
ous, cloud and rain systems could take place. On the
downstream side of the mountain where convergence

occurred, we could also find cloud and rain systems.

5. Conclusion

During Mei-Yu season when Pacific high pres-
sure systems influence Taiwan, cloud and rain sys-
tems can form in mountain and sloped areas in the

afternoon. On May 24 to 26, June 7, June 19 to
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20, 1987, this phenominon occured as illustrated in
Figs. 2 and 3. The level of free convection (LFC)
was about 1 km in height in the afternoon. Thus lift-
ing from topographical effects or other factors could
help convection occur. Observational analysis and
numerical simulation indicate that cloud and precip-
itation systems could occur in the central mountain
area where lifting and heating were evident. On the
upstream side of the mountain where topographic
lifting was obvious, cloud and rain systems could
take place. On the downstream side of the moun-
tain where convergence occurred, we also could find

cloud and rain systems.
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Fig. 2 The daily rainfall amount (mm) over Taiwan
island on (a) May 24 (b) May 25 (c) May 26 (d)
June 7 (e) June 19 (f) June 20, 1987. The contour

intervals are 10 mm,
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Fig. 3 Visible satellite images for 1400 LST (

local standard time) for {a) May 24
(b} May 25 (¢) May 26 (d) June 7 (e) June 19 (f) June 20, 1987.
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Fig. 12 Same as in Fig.9 but for June 7, 1987.
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Fig. 13 Same as in Fig.9 but for June 19, 1987.
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