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1. INTRODUCTION

One would expect that improvements in numerical
weather prediction will result from the integration of more

“exact” models initialized with more “accurate” initisl data.

More accurate initial data can be obtained by better in-
strumentation, careful observations, data quality control
and improved objective analysis and initialization. More
exact models may be achieved by integrating a more cor-
rect set of equations, for dynamical as well as physical fore-
ings (parameterization) formulations, and from the appli-
cation of more accurate numerical methods to sclve these
equations.

Ever since the first successful integration of an atmo-
spheric model, there has been an uninterrupted succes-
sion of improvement in dynamical model: from nondiver-
gent barotropic equations (Charney et al. 1950) to quasi-
geostrophic barotropic (Charney et ai. 1956) to “filtered”
baroclinic (Charney 1962) to “primitive” equations {Schu-
man and Hovermale 1968). Improvements in the physi-
cal parameterization due to unresolved motions have re-
sulted in great improvement of weather forecasts, espe-
cially for longer range integrations, and of climate simula-
tions. These include, for example, detailed boundary layer
with surface hydrology and energy balance (e.g. Deard-
off 1978), moist convection and cumulus parameterization
(e.g. Arakawa and Schubert 1974; Kuo 1574}, unresolvable
scale cascade (Leigh 1971; Boer ¢t al. 1984) and recently
the development of gravity-wave drag (McFarlane 1987},

Accuracy methods reduce the truncation errors. For
example, the spectral method is very accurate for the hor-
izonial discretization due to its “exponential convergence”
property. The finite element methods can be used advanta-
geously over conventional finite differences in limited-area
model (e.g. Staniforth and Daley 1977). However, the
accuracy is not the whole picture for the choice of numer-
ical methods. The need for the accuracy motivates the
development of more eflicient schemes. For example, the
development of the semi-implicit method {Robert et al.
1972) has made possible an carly operational implemen-
tation of primitive equation models. The advent of the
spectral transform method (Eliasen et al. 1970) as well
as the advent of Fast Fourier Transform (FFT) has made
the spectral methods more attractive for practical appli-
cations. Recently the semi-Lagrangian methods {(Robert

1981) has ellowed a reduction in the number of timesteps
required to integrate a model for a given period. The net
effect of more efficient numerics is similar to that of more
accurate ones in that it allows the use of more expensive,
more exact numerics, higher resolution or more sephisti-
cated physics, at the same computational cost.

In this paper, we report our efforts in the direction of
more “accurate” initial data. In particular, we concentrate
on the procedure of nonlinear normal mode initialization.
We discuss the basis and the results of the nonlinear nor-
mal mode initialization. The nonlinear normal mode ini-
tialization wiil be used in the Central Weather Bureau’s
second generation global spectral model. Since the im-
plementation of the nonlinear normal mode initialization
require a discretized global model to produce the time ten-
dency, we present the spectral discretized global model, the
sphericel harmenics basis function and the spectral trans-
form techniques in section 2. The nonlinear normal mode
initialization are discussed in section 3. Section 4 presents
the test of nonlinear normal mode initialization in mid-
latitude and tropics. Section § gives concluding remarks,

2. GOVERNING EQUATIONS AND SPECTRAL
TRANSFORM TECHNIQUES

a.governing equations

The primitive equations, which are derived from the
Euler equations of compressible fluid motion with hydro-
static balance and the trational approximation {Phillips,
1966), is used here. The vertical coordinate is the sigma
coordinate (0 = (p — puop)/(7 — piop)). Here m denotes
the surface pressure and Ptop denotes the pressure (fixed)
at model top. The adiabatic governing equations in the
spherical geometry are
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where A the longitude, ¢ the latitude, pp = sin(yg), a the
radius of earth, f = 20sin(p) with the angular rotation
rate of the earth denoted by @, U = ucos(¢)fe, V =
veos(@)/a, P = (pfpo)"/% and B = Y(U? +V)a*/(1
#%). The operator a{A, B) is define d as
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From the definition of (4, B), we have

¢=aV,-U), (2.7
and

D =a(l,V). (2.8)

The inversion of U and V from known ¢ and D can
be mostly easily done in the spectral space. The G and H
in (2.1) and (2.2) are defined as
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The hydrostatic equation takes the form of (2.3) for
the reason of discretization. Detail of vertical discrefiza-
tion will not given here. The Lorenz grid and energy con-
servation finite difference is used. Equations (2.1)-(2.8)
constitutes a closed system for the dependent variables
vorticity ({), divergence (D), three-dimensional velocities
(U7, V and &), potential temperature (6), geopotential ($)
and terrain pressure {7). The pressure p at each o level is
computed from equation of state.

A adiabatic prediction cycle of {2.1}-(2.8) is as follows:

(a): U, V, ¢, D, 6 and & are known.

(b): Predict @ by (2.1).

{(¢): Diagnose & by (2.2).

(d): Diagnose & from known § by (2.3).

(e): Compute &, H and thus the tendencies (right
hand side of (2.4)~ (2.6)).

(£): Predict ¢, D and @ by (2.4)-(2.6).

(g): Dignose U and V from ¢ and D by {2.7) and
(2.8).

(h): Go back to step (b).
b.spectral expansions

In this section we derive the spectral representation
of the field variables and discuss the nature of the corre-
sponding Gaussian grid point value.

The spectral expansion of any global field X with a
triangular truncation M is defined by

M M
XOumt)= > D XPOPP (e,

m=—M n:imf

(2.10)
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Because the global field is real, we have X7* = X "*, and
only the spectral coefficients for nonnegative m need to be

stored (here * denotes the complex conjugate). The P,’;"(p)
are the normalized associated Legendre functions of degree
m and order n, defined by

_ntln-mby g aym & Pals)
Prie) = (R ST i S
(2.11)
where P,(g) is the ordinary Legendre polynomial given by
1o,
= — -n". 212

With the above normalization, the orthonormality con-
dition .
[ PrGorrtnd = b (2.13)
-1
holds. The spectral coefficients are obtained from (2.10)
by applying the orthogonality property of the spherical
harmonies :
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(2.14)
The integral with respect to A in (2.14) is performed using
fast Fourier transform (FFT). The remaining integral is
evaluated by a Gaussian quadrature :

K .
=D wiXum(t )P (115) (2.15)
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where the w; are the Gaussian weights and Xy, is the
Fourier transform of X. The Gaussian latitudes ¢; (1)
are determined as the zeros of the ordinary Legendre poly-
nomial of order K. The Gaussian sum is exact for any
polynomial of degree 2K — 1. The weight w; is given by

e =

]

(2.16)

Finally we can transform the spectral coefficients to
physical grid point by

M M .
ST XPOPR(py)e™.
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Xz t) = (2.17)

Equations (2.158) and (2.17) constitutes the transform pair
with (2.15) transforms a variable from physical space to
spectral space while (2.17) transforms back. The precal-
culated X, for (2.15) and the summation over m in (2.17)
are performed by FFT’s. The spectral coefficients of non-
linear terms are evaluated by the transform method. To
climinate aliasing error in the transformation of quadratic
nonlinear terms, 3M + 1 points in A and K = (3M +1)/2
points in g are needed in the physical domain.

The Legendre functions were computed from recursion
formulas recommends by Belousov (1962). The method
involves values at (m, n— 1), {m — 2, n — 1}, and (m — 2,
n—2k
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We note that this formula requires previous values in the
whole triangles defined by the points (0, 0), (0, n — 1},
(m,; — 1) in the (m, n) wavenumber plane. Values for
m = 0 and m = 1 must be obtained independentty. The
Belousov method can be implemented as
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where § is 0 for n odd and 1 for n even. The Ay, bjn and
b}, are obtained from the relations
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From the governing equations in section 2, the grid
point values of the horizontal derivatives are needed for
the calculation of the time tendencies of the dependent
variables. The discrete values of the horizontal derivatives
are obtained from the expansion (2.10), which we used to
obtain
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The evaluation of the advection tendency terms re-
quires the computation of the grid point values of the co-
sine weighted velocities, U and V. By the aid of stream
function, velocity potential and the relationship

v pmuemty = —(20 D pmgem,

the U and V are relaied by vorticity ¢ and divergence D
by
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The spectral coefficients of the vorticity and the divergence
can be obtained from the grid point fields of U and ¥ by us-
ing the spectral representations, which are given by (2.21)
and (2.22), the orthogonally of the expansion functions,
and the zero boundary conditions of U and V at the poles.
The final form is written,

2w
(i) = ] VO DPE (e dpd
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and
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The integrais in (2.21) and (2.22) are calculated in the
same manner as (2.17) while integrals in (2.23) and (2.24)
are calculated the same manner as (2.15).

3. NONLINEAR NORMAY, MODE INITIALIZA-
TION

To perform NNMI we need expand the model vari-
ables in terms of its normal mode. This is the same as
the eigenfunction expansions. The eigenvalue problem is
essentially the problem of determining the dependence of
the general behavior of eigenfunction on the eigenvalue and
the dependence of the eigenvalue on the houndary condi-
tion imposed on the eigenfunction.

We will consider the adiabatic nonlinear normal mode
initialization in our development. The basic procedure
of Nonlinear Normal Mode Initialization (N¥MI) is illus-
trated in terms of vertical and horizontal transforms.
a.vertical transform

The vertical transform reveals that the linearized prim-
itive equations is equavalent to a set of the linearized shal-
low water equations with different equivalent depth {grav-
ity wave speed). Using the usual notation, the unforced,
nonlinear vertically discrete model prognostic equations
can be written in the form

9k

3 + 20p Dy + 20QVy = Ne g, (3.1a)
dD;
37; — 90l + 2 + VI, = Npy, (3.1b)
and 00
_a—* +8D; = Ng ¢ (3.1¢)



where N are nonlinear terms, S is an L x L matrix, k
the vertical level index and L is the number of the vertical
level used. The S depends on the vertical discretization
scheme and the choice of the basic state. The prognostic
equations (3.1) form the foundation for the separation of
the dependent variables {, D and & into horizontal and
vertical structures.

The vertical transform of (3.1) involves finding the
eigenvectors of § and using these orthonormal eigenvec-
tors to perform similarity transform. This will transform
S into a diagonal matrix with component CZ, the square
of gravity wave speed in kth vertical mode. After the ver-
tical transform, we get a set of the discrete shallow water
equations. The discrete shallow water system (horizontal
structure equations) can be written symbolically as

W,
ot

+ LW = Nj, (3.2)

With the completeness property, we have the eigenfunction
expansions for the vector Wy,

Wk(t,/\,u) = Z kans(t)Kkmna{)‘:P): (3'6)
kmna

where mt, n denotes wavenumbers in the zonal and merid-
lonal directions and s the type of motions such as Rota-
tional waves and inertial gravity waves. With orthonormal
property of (3.5), we compute Wimpst by

Wk‘mns(t) = (Wk(ts A)ﬂ)aKkmns(’\a .U')) (37)

Equations (3.6) and (3.7) are the transform pair of our
eigenexpansions.

We now ready to derive the spectral equation of Wiy, (1)

by taking the inner product of (3.3) and Kimns(}, pt) to
obtain

. . _ . . . W,
with the equivalent depth of C} is contained in the hneaqw,Kkmm(}\,H»_I_(Lkwk)KkmM(/\’#)) = (N, Kkmno(A, 1))

operator Ly.

Although we have started with (3.1), which has a zero
basic wind state, the whole argument of vertical trans-
form would have applied even if we had variable zonal and
meridional mean winds U(z,y,#) and V(z,y,t) as long as
they are not function of ¢. Provided that the basic state
temperature is a function of ¢ only and o5(p,) and p, re-
main constant in the vertical transform.

It should be mentioned that the sufficient conditions
to perform the vertical transform are that the atmosphere
is hydrestatic and stable. The stable atmosphere (i.e.
dé/dz > 0) guarantees the positive definitness of CZ. Since
matrix S comes from a Sturm-Licuville operator, the eigen-
vghues are of the order of k% and the gravity speed of each
internal vertical mode is Oy = Q(1/k). Namely, the kth
internal mode has the speed of O{C;/k) where C) is the
gravity wave speed of the first internal mode.
b.horizontal transform

We now try to solve this discrete analog of the Sturm-
Liouville problem. With the proper choice of basic state,
L is usually a skew-Hermitian eperator. Namely,

(Lyl,g) = (f, - Lg), (3.8)

where { , ) is a proper inner product and functions g
and f satisfy boundary conditions of our system. The
mner product will be the Hough transiorm for the global
model. The skew-Hermitian operator has the following
properties: the cigenvalues are imaginary, eigenfunctions
are orthogonal and more importantly, eigenfunctions form
a complete set. These properties can be written as

LkKkmﬂg(/\, ,U) = inmnaKkmns(Aa .Pu)! (34)

where the imaginary eigenvalues ivgmns of Ly operator are
the frequencies of the model’s normal mode. The eigen-
vectors Kipmns(A, 1} are the well known Hough function
on the sphere. The Kimns(A, ) satisfy the orthonormal
condition

otherwise,

(Kimns( A, ) Kirmenes (A, )} = {0,
(3.5)

1, if (k,m,ns) = (kK.m'\n's")

(38
Using the definition of skew-Hermitian operator and (3.4)
we obtain

(Lkwkg Kkmns(/\, P-)) = (Wka LkKkmns(Aa i—"))

= (Whiykmnszmns(Aa f-“)) = i""'kmns(wks Kkmna(’\nu))'

(3.9)
Equation (3.8) then becomes
EWernns(t ; . : .
JE&M -+ zykmnswknlns(t) = Nkmna, (310)
where
Nkmns = (NkaKkmns(}‘: ﬂ)) (311)

We have now transformed our original governing equations
(3.1) into the spectral equation (3.11). There are many
variations on this theme. One can change from sphere
to f-plane to the mid-latitude or equatorial 8 plane, or
even to the cylindrical geometry. The Hough transforms
in the sphere case is replaced by the Hermite transforms

in the equatorial A plane case ,by the Fourier transforms
in the mid-latitude 8 plane case and by Bessel transform
in the cylindrical geometry case. Finally, we note that
a hydrostatic system is not necessary. The method works
for nonhydrostatic problems using anelastic, Boussinesq or
even fully compressible equations {in the last case acoustic
modes arise).

c.nonlinear normal mode initialization

When the governing equations are written in normal
mode form as in (3.11) the application of the NNMT is
straightforward. The first step is to divide Wimns into
a slow mode (low frequency) part and a fast mode (high
frequency) part. For NNMI, the amplitude of the slow
modes are not changed, while the amplitude of the fast
modes are determined by assuming the dWimnas/dt is small
enough at model initial time so that (3.11) becomes

¢

Wemne = — Nimne, 8 = fast modes. {3.12)

Vimns



Since Nimas in (3.12) is a nonlinear function of Wimnas
this equation is solved by the fixed point iteration de-
scribed by

)

Nkmns(W;E::ns),S = fast modes.

Ykmna

(3.13)

where the superscript r is the iteration number.

In practice, Nkmm,(W,E:zm) is not computed. Instead,
the time tendency of the discretized model are used in the
iterations. The normal mode decomposition of the fields
is carried out in terms of the spectral representation of
the dependent variables, Accordingly, we obtain the spec-
tral representations of (3.1), by expanding the dependent
variables in the form

M M i
ze(Amt)= Y Y aROPI ()™, (3.14)

m=—M n=|m{

where 2/7(1) is a column vector of spherical harmonic co-
efficients. :

4. NUMERICAL RESULTS

a.Rossby-Haurwitz wave test

"The initial condition in our first experiment is a wave
number 6 Rossby-Haurwitz waves from the nondivergent
barotropic model, Fig.1 is an amplitude normalized har-
monic dial from the wavenumber 6 of the Fourier series of
surface pressure along a mid-latitude ring. For this case
the model is integrated without dissipating processes ex-
cept the Robert time filter. Two observations are in order.
First, the lack of initialization shows in large amplitude
oscillations over the 24 hours. This is not unusual and will
be eliminated with the NNMI. Secondly, the phase speed of

the model solution is slightly less than the analytical phase .

“speed. This too is normal because the model solution is
divergent, causing a lag relative to the nondivergent solu-
tion. The slight loss in amplitude of the model solution as
compared to the nondivergent barotropic solution is due
to the geostrophic adjustment during the first 24 hours.

Fig. 2 is the same as Fig. 1 except that the NNMT
is performed initially. It is clear that the large amplitude
oscillations disappear in the initial 24 hour. In addition,
the later model path (after 24 hour) as revealed by the
barmonic dial is exactly the same as what is in Fig. 1.
This is the ideal situation that the NNMI filtered out the
initial oscillations and not affecting the final geostrophic
adjustment state.
b.the Gill’s tropical test

The initial condition in our second experiment is a
'mass source located on the equator. We considered the
calcualtion only of the first internal mode. The physical
situation is studied analytically by Gill (1980) with the
long wave approximation (i.e. dv/dt = 0) in a linearized
shallow water model on equatorial g plane. Detail analysis
of the long wave approximation on a spherical baroclinic
model is discussed by Stevens et al. (1990). Fig. 3 gives
the steady state of the Gill’s solutions. The eastward prop-
agation of the Kelvin waves and the westward propagation
of the Rosshy waves are ocbvious. The Kelvin waves prop-
agated with a speed that is three times faster than the
Rossby waves.

Fig. 4 give the numerical results of geopotential and
wind velocity at 36 hour. No NNMI is used in this compu-
tation. Fig. 5 is the same as Fig. 4 except that the NNMI

is used initially. Although the Rossby and Kelvin signa-
tures are existed in both calculations, the NNMT yields a
solution similar to Gill’s results, This suggests that NNMI
is not just a trick to filtered out model’s initial spurious
gravity waves. The NNMI is related to the balanced dy-
namics of the tropical atmosphere.

5. CONCLUDING REMARKS

The formulation and the results of the nonlinear nor-
mal mode initialization NNMI of an adiabatic global spec-
tral baroclinic model are given. This development will
be used in the CWB’s second generation global spectral
model.

In our development, the normal mode decomposition
of the fields is carried out in terms of the spectral represen-
tation of the dependent variables. Temperton (1988) have
shown that the implicit NNMI schemes are equivalent to
explicit NNMI, except they are formulated on the model’s
horizontal grid rather than in terms of normal mode coeffi-
cients. In implicit NNMI, one need to solve for Helmholtz
type of equations. To solve Helmholtz equation efficiently
on the sphere is still a challenge for the atmospheric mod-
eler. On the other hand, the explicit NNMI requires the
eigenvector calculation and the normal mode transform in
terms of spectral discretizations. The data structure of the
spectral coefficients is crucial to the successful programing,
Thus, it is important to point out that the modeling strate-
gies involved for the implicit and explicit initializations are

" very different.
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In the mid-latitude Rossby-Haurwitz wave test, the
NNMI filters out the initial spurious graivty waves while
not alter later model results. The improvemnet of short
term forecasts will provide better, more noise-free, first
guess fields for use in the analysis of atmospheric data.
Without NNMI, good data may be rejected as being too
different from the first initial guess fields that are not noise-
free. By not aflecting the final geostrophic adjustment, the
NNMI may have little divect effect on the forecast skill.
However, the indirect role of NNMT in the data analysis is
of the greatest importance,

In the tropical experiment, the NNMT produces results
that are related to the balanced dynamics of the tropics.
This suggests that NNMI is not just a trick to filtered
out model’s initial spurious gravity waves. [t should not
be a subject of interest only regarding NWP modeling.
The NNMI is related to the balanced dynamics and the
invertibility principle in the atmosphere.
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Figure 1. An amplitude normalized harmonic dial from the

Rossby-Haurwitz wave test. The real and imagi-
nary coefficents of the wavenumber 6 of the Fourier
series of surface pressure along a mid-latitude

ring are plotted. No NNMIJ is performed ini-
tially. '

Figure 2. Same as Fig.l except NNMI is performed ini-
tially.
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Figure 3. The steady state of the Gill’s solutions. The
eastward propagation of the Kelvin waves and
the westward propagation of the Rosshy waves
are obvious. The Kelvin waves propagated with
a speed that is three times faster than the Rossby
waves (adapted from Gill (1980)) .
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Figure 4. The numerical results of geopotential and wind
velocity at 36 hour. No NNMTI is used initially.
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Figure 5. Same as Fig. 4 except that the NNMI is used
initially.
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